
Math 290 ELEMENTARY LINEAR ALGEBRA

STUDY GUIDE FOR MIDTERM EXAM – A

September 27 (Wed), 2017

Instructor: Yasuyuki Kachi

Line #: 25751.

§1. What is linear algebra? Overview.

◦ We use matrices to rewrite systems of linear equations. Examples:

{

4x + 3y = 5,

2x − 6y = −7
⇐⇒

“equivalent”

[

4 3

2 −6

] [

x

y

]

=

[

5

−7

]















2x1 − x2 + 4x3 = 1,

x1 + 2x2 + 5x3 = 2,

3x1 − x2 + 2x3 = 4

⇐⇒
“equivalent”





2 −1 4

1 2 5

3 −1 2









x1

x2

x3



 =





1

2

4





◦ More on this later. Putting that aside, acknowledge

Formula. The system of equations

(#)

{

ax + by = e,

cx + dy = f

is solved as

(

x, y
)

=

( −bf + de

ad − bc
,

af − ce

ad − bc

)

,

provided

ad − bc 6= 0.
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The common denominator of the two fractions ad − bc is the determinant
∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

. So

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

= ad − bc.

Formula. The system of equations

(##)















a1x1 + a2x2 + a3x3 = p,

b1x1 + b2x2 + b3x3 = q,

c1x1 + c2x2 + c3x3 = r

is solved as

(

x1, x2, x3

)

=

(

p b2c3 − p b3c2 − a2 q c3 + a2b3 r + a3 q c2 − a3b2 r

a1b2c3 − a1b3c2 − a2b1c3 + a2b3c1 + a3b1c2 − a3b2c1
,

a1 q c3 − a1b3 r − p b1c3 + p b3c1 + a3b1 r − a3 q c1

a1b2c3 − a1b3c2 − a2b1c3 + a2b3c1 + a3b1c2 − a3b2c1
,

a1b2 r − a1 q c2 − a2b1 r + a2 q c1 + p b1c2 − p b2c1

a1b2c3 − a1b3c2 − a2b1c3 + a2b3c1 + a3b1c2 − a3b2c1

)

,

provided

a1b2c3 − a1b3c2 − a2b1c3 + a2b3c1 + a3b1c2 − a3b2c1 6= 0.

The common denominator of the three fractions is the determinant

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3
c1 c2 c3

∣

∣

∣

∣

∣

∣

.

So
∣

∣

∣

∣

∣

∣

a1 a2 a3
b1 b2 b3

c1 c2 c3

∣

∣

∣

∣

∣

∣

= a1b2c3 − a1b3c2 − a2b1c3 + a2b3c1 + a3b1c2 − a3b2c1.
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• The determinant

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

= ad − bc naturally popped up out of

{

ax + by = e,

cx + dy = f.

Its 3 × 3 counterpart is the determinant

∣

∣

∣

∣

∣

∣

a1 a2 a3
b1 b2 b3

c1 c2 c3

∣

∣

∣

∣

∣

∣

= a1b2c3 − a1b3c2 − a2b1c3 + a2b3c1 + a3b1c2 − a3b2c1,

which pops out of















a1x1 + a2x2 + a3x3 = p,

b1x1 + b2x2 + b3x3 = q,

c1x1 + c2x2 + c3x3 = r.

You can effectively use the above formula and solve, for example,















2x1 − x2 + 4x3 = 1,

x1 + 2x2 + 5x3 = 2,

3x1 − x2 + 2x3 = 4,

by way of just throwing

a1 = 2, a2 = −1, a3 = 4,

b1 = 1, b2 = 2, b3 = 5,

c1 = 3, c2 = −1, c3 = 2,

p = 1, q = 2 and r = 4

into
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(

x1, x2, x3

)

=

(

p b2c3 − p b3c2 − a2 q c3 + a2b3 r + a3 q c2 − a3b2 r

a1b2c3 − a1b3c2 − a2b1c3 + a2b3c1 + a3b1c2 − a3b2c1
,

a1 q c3 − a1b3 r − p b1c3 + p b3c1 + a3b1 r − a3 q c1

a1b2c3 − a1b3c2 − a2b1c3 + a2b3c1 + a3b1c2 − a3b2c1
,

a1b2 r − a1 q c2 − a2b1 r + a2 q c1 + p b1c2 − p b2c1

a1b2c3 − a1b3c2 − a2b1c3 + a2b3c1 + a3b1c2 − a3b2c1

)

.

That way you readily get the answer

(

x1, x2, x3

)

=

(

47

23
,

27

23
, − 11

23

)

.

Here, a part of the calculation is a1b2c3−a1b3c2−a2b1c3+a2b3c1+a3b1c2−a3b2c1,

which is the determinant

∣

∣

∣

∣

∣

∣

2 −1 4

1 2 5

3 −1 2

∣

∣

∣

∣

∣

∣

:

∣

∣

∣

∣

∣

∣

2 −1 4

1 2 5

3 −1 2

∣

∣

∣

∣

∣

∣

= 2 · 2 · 2 − 2 · 5 ·
(

−1
)

−
(

−1
)

· 1 · 2 +
(

−1
)

· 5 · 3 + 4 · 1 ·
(

−1
)

− 4 · 2 · 3

= 8 −
(

−10
)

−
(

−2
)

+
(

−15
)

+
(

−4
)

− 24

= −23.

Question 1. In the above example, the calculation was quite involved due to the
complexity of the formula. Is there another, simpler formula?

— The short answer is ‘no’.

Question 2. If that’s the case, is there a method that algorithmically deduces
the answer, for each concrete system of equations

(

3× 3
)

, something like the above,
without ever relying on the formula?

— The short answer is ‘yes’: Gaussian elimination method
(

later
)

.
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• Just take a look:

∣

∣

∣

∣

∣

∣

∣

∣

a1 a2 a3 a4
b1 b2 b3 b4

c1 c2 c3 c4
d1 d2 d3 d4

∣

∣

∣

∣

∣

∣

∣

∣

= a1b2c3d4 − a1b2c4d3 − a1b3c2d4 + a1b3c4d2 + a1b4c2d3 − a1b4c3d2

−a2b1c3d4 + a2b1c4d3 + a2b3c1d4 − a2b3c4d1 − a2b4c1d3 + a2b4c3d1

+a3b1c2d4 − a3b1c4d2 − a3b2c1d4 + a3b2c4d1 + a3b4c1d2 − a3b4c2d1

−a4b1c2d3 + a4b1c3d2 + a4b2c1d3 − a4b2c3d1 − a4b3c1d2 + a4b3c2d1 .

§2. Determinants – Intro.

Definition (Determinant; 222××× 222).

The determinant

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

is defined as follows:

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

= ad − bc.

— So, for example:

Example.

∣

∣

∣

∣

7 5
2 1

∣

∣

∣

∣

= 7 · 1 − 5 · 2

= −3.

Not that hard. However, there is something I want to stress:

Determinant is defined for each matrix,

meaning:
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∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

= ad − bc is the determinant of the matrix

[

a b

c d

]

.

For example,

∣

∣

∣

∣

7 5
2 1

∣

∣

∣

∣

= −3
(

as we have just calculated
)

is regarded as the

determinant of the matrix

[

7 5
2 1

]

. By implication: For your successful grasp of

the concept of determinants, you need to agree on the following first and foremost:

◦ First there is this notion of matrices.

◦ Then the determinant is defined for each matrix.

◦ Matrices themselves are arrays, whereas:

◦ The determinant of a matrix is a scalar.

• We use a letter, typically a capital letter, to represent a matrix. So we say

“ ”
Let A stand for the matrix

[

a b

c d

]

.

Or just

“ ”
Let A =

[

a b

c d

]

.

Taking all these intoa account:

Official Definition of Determinant (222××× 222).

Let A =

[

a b

c d

]

. Define the determinant of the matrix A as

detA =

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

= ad − bc.

6



Example. (1) For A =

[

−6 2
8 −4

]

, its determinant is

detA =

∣

∣

∣

∣

−6 2
8 −4

∣

∣

∣

∣

=
(

− 6
)

·
(

− 4
)

− 2 ·8

= 8.

(2) For A =

[

−2 4
−3 6

]

, its determinant is

detA =

∣

∣

∣

∣

−2 4
−3 6

∣

∣

∣

∣

=
(

− 2
)

·6 − 4 ·
(

− 3
)

= 0.

(3) For A =

[

1 0
0 1

]

, its determinant is

detA =

∣

∣

∣

∣

1 0
0 1

∣

∣

∣

∣

= 1 ·1 − 0 ·0

= 1.

Exercise (= “II”; Exercise 1). Calculate:

(1)

∣

∣

∣

∣

1 6
1 3

∣

∣

∣

∣

. (2)

∣

∣

∣

∣

2 −1
1 2

∣

∣

∣

∣

. (3)

∣

∣

∣

∣

∣

2 5
3

10
4

∣

∣

∣

∣

∣

.

(4) detA, where A =





1
1

2

1

2

1

4



.

(5a) detA, where A =

[

1 −1
1 1

]

. (5b) detB, where B =





1√
2

−1√
2

1√
2

1√
2



.

(6a) detA, where A =

[√
3 −1

1
√

3

]

. (6b) detB, where B =





√
3

2

−1

2

1

2

√
3

2



.
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(7a) detA, where A =

[

−1+
√

5 −
√

10+2
√
5

√

10+2
√
5 −1+

√
5

]

.

(7b) detB, where B =







−1+
√

5
4

−
√

10+2
√

5

4√
10+2

√
5

4
−1+

√
5

4






.

• Now, keeping the narrative intact, let’s define the 3 × 3 determinant:

Official Definition of Determinant (333××× 333).

Let A =





a1 a2 a3
b1 b2 b3
c1 c2 c3



. Define the determinant of the matrix A as

detA =

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3
c1 c2 c3

∣

∣

∣

∣

∣

∣

= a1b2c3 − a1b3c2 − a2b1c3 + a2b3c1 + a3b1c2 − a3b2c1.

• Co-factoring.

Observe

∣

∣

∣

∣

∣

∣

a1 a2 a3
b1 b2 b3
c1 c2 c3

∣

∣

∣

∣

∣

∣

= a1b2c3 − a1b3c2 − a2b1c3 + a2b3c1 + a3b1c2 − a3b2c1

= a1

(

b2c3 − b3c2

)

− a2

(

b1c3 − b3c1

)

+ a3

(

b1c2 − b2c1

)

= a1

∣

∣

∣

∣

b2 b3
c2 c3

∣

∣

∣

∣

− a2

∣

∣

∣

∣

b1 b3
c1 c3

∣

∣

∣

∣

+ a3

∣

∣

∣

∣

b1 b2
c1 c2

∣

∣

∣

∣

.
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More generally:

(i)a

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3
c1 c2 c3

∣

∣

∣

∣

∣

∣

= a1

∣

∣

∣

∣

b2 b3
c2 c3

∣

∣

∣

∣

− a2

∣

∣

∣

∣

b1 b3
c1 c3

∣

∣

∣

∣

+ a3

∣

∣

∣

∣

b1 b2
c1 c2

∣

∣

∣

∣

.

(i)b

∣

∣

∣

∣

∣

∣

a1 a2 a3
b1 b2 b3
c1 c2 c3

∣

∣

∣

∣

∣

∣

= −b1

∣

∣

∣

∣

a2 a3
c2 c3

∣

∣

∣

∣

+ b2

∣

∣

∣

∣

a1 a3
c1 c3

∣

∣

∣

∣

− b3

∣

∣

∣

∣

a1 a2
c1 c2

∣

∣

∣

∣

.

(i)c

∣

∣

∣

∣

∣

∣

a1 a2 a3
b1 b2 b3
c1 c2 c3

∣

∣

∣

∣

∣

∣

= c1

∣

∣

∣

∣

a2 a3
b2 b3

∣

∣

∣

∣

− c2

∣

∣

∣

∣

a1 a3
b1 b3

∣

∣

∣

∣

+ c3

∣

∣

∣

∣

a1 a2
b1 b2

∣

∣

∣

∣

.

(ii)1

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3
c1 c2 c3

∣

∣

∣

∣

∣

∣

= a1

∣

∣

∣

∣

b2 b3
c2 c3

∣

∣

∣

∣

− b1

∣

∣

∣

∣

a2 a3
c2 c3

∣

∣

∣

∣

+ c1

∣

∣

∣

∣

a2 a3
b2 b3

∣

∣

∣

∣

.

(ii)2

∣

∣

∣

∣

∣

∣

a1 a2 a3
b1 b2 b3
c1 c2 c3

∣

∣

∣

∣

∣

∣

= −a2

∣

∣

∣

∣

b1 b3
c1 c3

∣

∣

∣

∣

+ b2

∣

∣

∣

∣

a1 a3
c1 c3

∣

∣

∣

∣

− c2

∣

∣

∣

∣

a1 a3
b1 b3

∣

∣

∣

∣

.

(ii)3

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3
c1 c2 c3

∣

∣

∣

∣

∣

∣

= a3

∣

∣

∣

∣

b1 b2
c1 c2

∣

∣

∣

∣

− b3

∣

∣

∣

∣

a1 a2
c1 c2

∣

∣

∣

∣

+ c3

∣

∣

∣

∣

a1 a2
b1 b2

∣

∣

∣

∣

.

Exercise (= “II”; Exercise 2). Compare these six lines and discern their
patterns

(

including the signs that come with the terms
)

.
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These show that a 3× 3 determinant is formed through 2× 2 determinants. This
is a part of the bigger picture: There is a hierarchical structure existing among the

expressions of different size determinants
(

2 × 2; 3 × 3; 4 × 4; ···
)

.

Example. For A =





1 2 2
0 1 −2
3 −1 4



, calculate detA =

∣

∣

∣

∣

∣

∣

1 2 2
0 1 −2
3 −1 4

∣

∣

∣

∣

∣

∣

.

We may directly apply the definition of the determinant:

detA =

∣

∣

∣

∣

∣

∣

1 2 2
0 1 −2
3 −1 4

∣

∣

∣

∣

∣

∣

= 1 · 1 · 4 − 1 ·
(

−2
)

·
(

−1
)

− 2 · 0 · 4 + 2 ·
(

−2
)

· 3 + 2 · 0 ·
(

−1
)

− 2 · 1 · 3

= 4 − 2 − 0 +
(

−12
)

+ 0 − 6 = −16.

But we could’ve applied the co-factoring, say (i)a, for the same problem instead:

∣

∣

∣

∣

∣

∣

1 2 2
0 1 −2
3 −1 4

∣

∣

∣

∣

∣

∣

= 1 ·
∣

∣

∣

∣

1 −2
−1 4

∣

∣

∣

∣

− 2 ·
∣

∣

∣

∣

0 −2
3 4

∣

∣

∣

∣

+ 2 ·
∣

∣

∣

∣

0 1
3 −1

∣

∣

∣

∣

= 1 · 2 − 2 · 6 + 2 ·
(

−3
)

= −16.

Or, we could’ve applied a different co-factoring, say (ii)2 instead:

∣

∣

∣

∣

∣

∣

1 2 2
0 1 −2
3 −1 4

∣

∣

∣

∣

∣

∣

= −2 ·
∣

∣

∣

∣

0 −2
3 4

∣

∣

∣

∣

+ 1 ·
∣

∣

∣

∣

1 2
3 4

∣

∣

∣

∣

−
(

−1
)

·
∣

∣

∣

∣

1 2
0 −2

∣

∣

∣

∣

= −2 · 6 + 1 ·
(

−2
)

−
(

−1
)

·
(

−2
)

= −16.
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Exercise (= “II”; Exercise 3). Calculate:

(1)

∣

∣

∣

∣

∣

∣

5 6 1
1 3 −4
2 5 2

∣

∣

∣

∣

∣

∣

. (2)

∣

∣

∣

∣

∣

∣

1 −1 0
3 1 1
−2 2 2

∣

∣

∣

∣

∣

∣

. (3)

∣

∣

∣

∣

∣

∣

1 2 3
4 5 6
7 8 9

∣

∣

∣

∣

∣

∣

.

(4) detA, where A =





−1 2 2
2 −1 2
2 2 −1



.

(5) detA, where A =





a b c

b c a

c a b



.

Factor the answer for (5).

(6) detA, where A =





0 b −c
−b 0 a

c −a 0



.

(7) detA, where A =





1 x x2

x 1 x3

x2 x3 1



.

Factor the answer for (7).

(8)* detA, where

A =













a2−b2−c2+d2 2
(

ab + cd
)

2
(

−ac + bd
)

2
(

−ab + cd
)

a2−b2+c2−d2 2
(

ad + bc
)

2
(

ac + bd
)

2
(

−ad + bc
)

a2+b2−c2−d2













.

Factor the answer for (8).
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§3. Matrix arithmetic — I. Inverse of a matrix.

• Recall from §1:

(∗)
{

4x + 3y = 5,

2x − 6y = −7
⇐⇒

“equivalent”

[

4 3

2 −6

] [

x

y

]

=

[

5

−7

]

The box on the right is a paraphrase of the box on the left. The right box:

[

4 3

2 −6

] [

x

y

]

=

[

5

−7

]

x y x y x y

‖ ‖ ‖
A xxx bbb

is basically

Axxx = bbb.

Just like the equation ax = b, where all the letters in sight are scalars, is solved as
x = a−1b, we want to solve the above as

“ ”xxx = A−1bbb .

Good news:

A−1 makes sense, as a 2× 2 matrix, and thus A−1bbb also makes sense,

under one condition: detA 6= 0.

Axxx = bbb =⇒
can solve,

xxx = A−1bbb.

if det A 6=0

This is a legit way to solve the equation Axxx = bbb. Here, most importantly, A−1

is below:
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Inverse of a 222××× 222 matrix.

Let A =

[

a b

c d

]

. The inverse A−1 of A is the following matrix:

A−1 =

[

a b

c d

]−1

=







d

ad−bc

−b

ad−bc

−c

ad−bc

a

ad−bc







.

A−1 exists, provided detA = ad − bc 6= 0.

We would much rather write it like

A−1 =
1

ad − bc

[

d −b
−c a

]

.

This is acceptable, with the proviso we adopt the following definition:

• Definition (Scalar multiplied to a matrix). Let s be a scalar. Then

s

[

a b

c d

]

=

[

sa sb

sc sd

]

.

Paraphrase:

If A =

[

a b

c d

]

and s : a scalar

=⇒ sA =

[

sa sb

sc sd

]

.
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Example. (1) 3

[

1 2
3 4

]

=

[

3 6
9 12

]

.

(2) 4

[

3 3
3 3

]

=

[

12 12
12 12

]

.

(3)
1

7

[

5 7
−1 0

]

=





5

7
1

−1

7
0



 .

(4)
9

2





2

9
2

4

9

1

9



 =

[

1 9

2
1

2

]

.

(5) 1

[

0 −2
6 3

]

=

[

0 −2
6 3

]

.

• An obvious generalization of (5) is

1

[

a b

c d

]

=

[

a b

c d

]

.

Paraphrase:

If A =

[

a b

c d

]

=⇒ 1A = A.

• Definition (negation).

−
[

a b

c d

]

=

[

−a −b
−c −d

]

.

Paraphrase:

If A =

[

a b

c d

]

=⇒ −A =

[

−a −b
−c −d

]

.
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Example. 0

[

1 1
2 3

]

=

[

0 0
0 0

]

, 8

[

0 0
0 0

]

=

[

0 0
0 0

]

.

• An obvious generalization of the above is

0

[

a b

c d

]

=

[

0 0
0 0

]

, s

[

0 0
0 0

]

=

[

0 0
0 0

]

.

• We denote

[

0 0
0 0

]

as O. Then we can paraphrase it as:

If A =

[

a b

c d

]

and s : a scalar

=⇒ 0A = O, sO = O.

Example.
(

−1
)

[

3 4
5 9

]

=

[

−3 −4
−5 −9

]

.

−
[

3 4
5 9

]

=

[

−3 −4
−5 −9

]

.

• As you can clearly see,

(

−1
)

[

a b

c d

]

= −
[

a b

c d

]

.

Paraphrase:

If A =

[

a b

c d

]

=⇒
(

−1
)

A = −A.
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Exercise (= “III”; Exercise 1). Write each of the following in the form

[

a b

c d

]

.

(1) 3

[

−4 2
6 5

]

. (2)
1

2

[

10 12
8 4

]

. (3)
1

8

[

1 0
0 1

]

.

(4)
(

−2
)

[

1 −3
−3 1

]

. (5) 1

[

7 −5
1

2
1

]

. (6) 0

[

124 242
163 89

]

.

(7) 1000

[

0 0
0 0

]

.

Exercise (= “III”; Exercise 2). Write each of the following in the form

[

a b

c d

]

.

(1) −
[

−6 −8
3 4

]

. (2) −
[

0 −1
1 0

]

. (3) −
[

1 0
0 1

]

.

Exercise (= “III”; Exercise 3). For A =

[

a b

c d

]

, define

AT =

[

a c

b d

]

(

the transpose of A
)

.

Assume AT = −A. Prove that there is a scalar s such that

A = s

[

0 −1
1 0

]

.
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Inverse of a 222××× 222 matrix, paraphrased.

Let A =

[

a b

c d

]

. The inverse A−1 of A is the following matrix:

A−1 =

[

a b

c d

]−1

=
1

ad − bc

[

d −b
−c a

]

=
1

detA

[

d −b
−c a

]

.

A−1 exists, provided detA = ad − bc 6= 0.

• Adjoint matrix.

For convenience of reference, we give it a name for a part of the A−1 formation:

A =

[

a b

c d

]

=⇒ A−1 =
1

detA

[

d −b
−c a

]

x y

‖
adjA

So,

A =

[

a b

c d

]

=⇒ adj A =

[

d −b
−c a

]

.

We call adjA the adjoint matrix of A.

• We may accordingly further paraphrase the above:
17



Inverse of a 222××× 222 matrix, paraphrased — II.

Let A =

[

a b

c d

]

. The inverse A−1 of A is the following matrix:

A−1 =

[

a b

c d

]−1

=
1

detA
adjA,

where

detA = ad − bc, and

adjA =

[

d −b
−c a

]

.

A−1 exists, provided detA = ad − bc 6= 0.

• Let’s calculate A−1 for some concete matrix A.

Example. A =

[

a b

c d

]

=

[

2 3
4 7

]

. Find A−1.

Here is how it goes:

Step 1. detA =

∣

∣

∣

∣

2 3
4 7

∣

∣

∣

∣

= 2 · 7 − 3 · 4

= 2.
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Step 2. adjA =

[

d −b
−c a

]

=

[

7 −3
−4 2

]

.

Step 3. A−1 =
1

detA
adjA

=
1

2

[

7 −3
−4 2

]



 =

[

7

2

−3

2

−2 1

]



 .

Example 5. A =

[

a b

c d

]

=

[

3 −2
−5 3

]

. Find A−1.

Step 1. detA =

∣

∣

∣

∣

3 −2
−5 3

∣

∣

∣

∣

= 3 · 3 −
(

−2
)

·
(

−5
)

= −1.

Step 2. adjA =

[

d −b
−c a

]

=

[

3 2
5 3

]

.

Step 3. A−1 =
1

detA
adjA

=
1

−1

[

3 2
5 3

]

=

[

−3 −2
−5 −3

]

.
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• What if the determinant of AAA equals 000 ?

When detA = 0, the inverse A−1 does not exist.

Example. A =

[

a b

c d

]

=

[

4 8
1 2

]

. Decide whether A−1 exists.

For that matter, it suffices to calculate detA:

detA =

∣

∣

∣

∣

4 8
1 2

∣

∣

∣

∣

= 4 · 2 − 8 · 1

= 0.

So, we conclude that A−1 does not exist.

Exercise (= “III”; Exercise 4). Decide whether A−1 exists, in each of (1–12)

below. If it does, then calculate it.

(1) A =

[

5 7
−1 3

]

. (2) A =

[

2 1
0 2

]

. (3) A =

[

6 6
6 6

]

.

(4) A =

[

0 −2
2 0

]

. (5) A =

[

1 3
3 1

]

. (6) A =





1
1

3

1

3

1

9



.

(7) A =

[

1 0
0 1

]

. (8) A =

[

−1 0
0 −1

]

. (9) A =

[

0 0
0 0

]

.

(10) A =





1√
2

−1√
2

1√
2

1√
2



. (11) A =





√
3

2

−1

2

1

2

√
3

2



.

(12) A =







−1+
√

5
4

−
√

10+2
√

5

4√
10+2

√
5

4
−1+

√
5

4






.
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Inverse of a 333××× 333 matrix.

Let A =





a1 a2 a3

b1 b2 b3
c1 c2 c3



. The inverse A−1 of A is the following matrix:

A−1 =





a1 a2 a3
b1 b2 b3
c1 c2 c3





−1

=
1

detA
adjA,

where

detA = a1b2c3 − a1b3c2 − a2b1c3 + a2b3c1 + a3b1c2 − a3b2c1,

and

adjA =























+

∣

∣

∣

∣

b2 b3
c2 c3

∣

∣

∣

∣

−
∣

∣

∣

∣

a2 a3
c2 c3

∣

∣

∣

∣

+

∣

∣

∣

∣

a2 a3
b2 b3

∣

∣

∣

∣

−
∣

∣

∣

∣

b1 b3
c1 c3

∣

∣

∣

∣

+

∣

∣

∣

∣

a1 a3
c1 c3

∣

∣

∣

∣

−
∣

∣

∣

∣

a1 a3
b1 b3

∣

∣

∣

∣

+

∣

∣

∣

∣

b1 b2
c1 c2

∣

∣

∣

∣

−
∣

∣

∣

∣

a1 a2
c1 c2

∣

∣

∣

∣

+

∣

∣

∣

∣

a1 a2
b1 b2

∣

∣

∣

∣























.

A−1 exists, provided detA 6= 0.

Exercise (= “III”; Exercise 5). Decide whether A−1 exists, in each of (1–6)

below. If it does, then calculate it.
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(1) A =







2 1 −2
5 −4 −1
1 −3 4






. (2) A =







1 3 1

2 4 1

1 −2 −2






.

(3) A =







3 4 −4
2 1 4

−2 4 1






. (4) A =







3 5 10

3 1 6

−2 −2 −6






.

(5) A =

















1
√

2
√

3

√
2

−2 − 3
√

6

5

6 −
√

6

5

√
3

6 −
√

6

5

−3 − 2
√

6

5

















.

(6) A =





















2 + 3
√

2

8

−2
√

3 +
√

6

8

√
6

4

−2
√

3 +
√

6

8

6 +
√

2

8

√
2

4

−
√

6

4
−

√
2

4

√
2

2





















.

§4. Matrix arithmetic — II. Multiplications.

• We can now solve a system of linear equations, of 2 × 2 type, using matrices.

Example. Solve

{

2x − y = 3,

6x + 7y = −5,

using the matrix trick.
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Solution. Let

A =

[

2 −1
6 7

]

, xxx =

[

x

y

]

, bbb =

[

3

−5

]

,

so the given system is Axxx = bbb. We may solve this as

A−1 bbb

‖ ‖
p q p q

xxx = A−1bbb =
1

2 · 7 −
(

−1
)

· 6

[

7 1

−6 2

] [

3

−5

]

x y x y

‖ ‖
1

det A
adjA

=
1

20

[

7 · 3 + 1 ·
(

−5
)

(

−6
)

· 3 + 2 ·
(

−5
)

]

=





4

5

− 7

5



.

• Here, in the last step the right conversion of

[

7 1

−6 2

] [

3

−5

]

is

[

7 · 3 + 1 ·
(

−5
)

(

−6
)

· 3 + 2 ·
(

−5
)

]

.

• More generally:

“ ”
The correct conversion of

[

a b

c d

] [

p

r

]

is

[

ap + br

cp + dr

]

.
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• Rule.

[

a b

c d

] [

p

r

]

=

[

ap + br

cp + dr

]

.

Paraphrase:

A =

[

a b

c d

]

, xxx =

[

p

r

]

=⇒ Axxx =

[

ap + br

cp + dr

]

.

Break-down. We are going to do

a b
[

p

r

][ ] [ ]

=





♦

♣



 .
c d

(i) To find ♦, observe

a b
[

p

r

][

c d

] [ ]

=





ap+ br

♣



 .

(ii) Next, to find ♣, observe

[

p

r

][

a b
] [ ]

=





ap+ br

cp+ dr



 .
c d

Example. For A =

[

5 −2
8 −9

]

, xxx =

[

6
4

]

, we have

Axxx =

[

5 −2
8 −9

] [

6
4

]

=

[

5 · 6 +
(

− 2
)

· 4
8 · 6 +

(

− 9
)

· 4

]

=

[

22
12

]

.
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Exercise (= “IV”; Exercise 1). Perform each of the following multiplications:

(1)

[

3
1

2
5

2
−1

] [

2

−1

]

. (2) Axxx, where A =

[

0 1
1 0

]

, xxx =

[

p

q

]

.

(3) Axxx, where A =

[

1 2
−6 8

]

, xxx =

[

2
3

]

.

(4) Axxx, where A =

[

3 −1
4 −1

]

, xxx =

[

1
2

]

.

Exercise (= “IV”; Exercise 2). Solve each of the folowing systems of equations
using matrices:

(1)

{

3x + 6y = 4,

7x + y = 1.
(2)















1

3
x + 4y = 4,

− 2

3
x + y =

4

3
.

• Matrix multiplication. How about multiplying out two matrices, like

[

a b

c d

] [

p q

r s

]

?

• Rule.

[

a b

c d

] [

p q

r s

]

=

[

ap + br aq + bs

cp + dr cq + ds

]

.

• Paraphrase:

A =

[

a b

c d

]

, B =

[

p q

r s

]

=⇒ AB =

[

ap + br aq + bs

cp + dr cq + ds

]

.
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• Break-down: First and foremost,

A and B are both 2 × 2 matrices =⇒ AB is a 2 × 2 matrix.

So

[

a b

c d

] [

p q

r s

]

=







 .

(i) We can find ♦ in

[

a b

c d

] [

p q

r s

]

=





♦




as

a b
[

c d

] [

q

s

]

=





ap+ br


 .

[

p

r

]

(ii) We can find ♥ in

[

a b

c d

] [

p q

r s

]

=





ap+ br ♥




as

a b
[

c d

] [

p

r

]

=





ap+ br aq + bs


 .

(iii) We can find ♣ in

[

a b

c d

] [

p q

r s

]

=





ap+ br aq + bs

♣
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as

[

p

r

][

a b
] [

q

s

]

=





ap+ br aq + bs

cp+ dr



 .
c d

(iv) Finally, we can find ♠ in

[

a b

c d

] [

p q

r s

]

=





ap+ br aq + bs

cp+ dr ♠





as

[

q

s

][

a b
] [

p

r

]

=





ap+ br aq + bs

cp+ dr cq + ds



 .
c d

• Alternative perspective.

[

a b

c d

] [

p q

r s

]

is like

[

p

r

] [

q

s

]
[

a b

c d

] [ ]

,

x y
‖ ‖ ‖
A xxx yyy

which is basically

A

[

xxx yyy

]

.

And this is going to be converted to
[

Axxx Ayyy

]

.
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Example. For A =

[

1 2
4 2

]

, B =

[

2 −1
−1 8

]

, we have

AB =

[

1 2
4 2

] [

2 −1
−1 8

]

=

[

1 · 2 + 2 ·
(

− 1
)

1 ·
(

− 1
)

+ 2 · 8
4 · 2 + 2 ·

(

− 1
)

4 ·
(

− 1
)

+ 2 · 8

]

=

[

0 15
6 12

]

,

BA =

[

2 −1
−1 8

] [

1 2
4 2

]

=

[

2 · 1 +
(

− 1
)

· 4 2 · 2 +
(

− 1
)

· 2
(

− 1
)

· 1 + 8 · 4
(

− 1
)

· 2 + 8 · 2

]

=

[

−2 2
31 14

]

.

• Important (!) As this example shows, AB and BA are usually not equal .

Exercise (= “IV”; Exercise 3). Perform each of the following multiplications:

(1)

[

−2 1
0 3

] [

2 1
6 5

]

. (2)

[

1 −2
−4 8

] [

3 7
−1 0

]

.

(3)

[

2 −1

1 2

] [ 3

2
1

1
−3

2

]

. (4)

[

a b

c d

] [

0 1
1 0

]

.

(5) AB, where A =





1√
2

−1√
2

1√
2

1√
2



, B =





1√
2

1√
2

−1√
2

1√
2



,
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(6) AB, where A =





√
3

2

−1

2

1

2

√
3

2



, B =





1

2
−
√

3
2

√
3

2

1

2



.

(7) AB, where A = B =







−1+
√

5
4

−
√

10+2
√

5

4√
10+2

√
5

4
−1+

√
5

4






.

§5. Matrix arithmetic — III. Identity matrix.

Definition.

[

1 0
0 1

]

is called the
(

2 × 2
)

identity matrix . Write

I =

[

1 0
0 1

]

.

Example. For A =

[

2 4
7 −3

]

, we have

IA = A, and AI = A.

Indeed,

I A =

[

1 0
0 1

] [

2 4
7 −3

]

=

[

1 · 2 + 0 · 7 1 · 4 + 0 ·
(

− 3
)

0 · 2 + 1 · 7 0 · 4 + 1 ·
(

− 3
)

]

=

[

2 4

7 −3

]

= A,

AI =

[

2 4
7 −3

] [

1 0
0 1

]

=

[

2 · 1 + 4 · 0 2 · 0 + 4 · 1
7 ·1 +

(

− 3
)

·0 7 ·0 +
(

− 3
)

·1

]

=

[

2 4

7 −3

]

= A.
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This is not a coincidence:

Fact 1. For I =

[

1 0
0 1

]

and A =

[

a b

c d

]

, we have

IA = A, and AI = A.

• This is something that requires a proof.

Proof. Do IA and AI for

I =

[

1 0
0 1

]

, and A =

[

a b

c d

]

.

I A =

[

1 0
0 1

] [

a b

c d

]

=

[

1 · a + 0 · c 1 · b + 0 · d
0 · a + 1 · c 0 · b + 1 · d

]

=

[

a b

c d

]

= A,

AI =

[

a b

c d

] [

1 0
0 1

]

=

[

a · 1 + b · 0 a · 0 + b · 1
c · 1 + d · 0 c · 0 + d · 1

]

=

[

a b

c d

]

= A. �

Analogy:

30



“In the context of matrix multiplications, the identity matrix ‘I’

serves the same role as ‘1’
(

the number
)

does in the usual number

multiplications. We always have

(∗) 1 a = a, and a 1 = a

for any number a. In the same token,

(#) I A = A, and AI = A

for any matrix A. These two, (∗) and (#), are entirely parallel.”

Quiz. Let A =

[

a b

c d

]

, and suppose A−1 exists.

AA−1 =? A−1A =?

Answer. AA−1 = I, and A−1A = I.

Proof. For A =

[

a b

c d

]

,

A−1 =
1

ad − bc
adjA, where

adjA =

[

d −b
−c a

]

.

In that regard, first calculate A
(

adjA
)

and
(

adj A
)

A each:
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A
(

adjA
)

=

[

a b

c d

] [

d −b
−c a

]

=

[

ad + b
(

−c
)

a
(

−b
)

+ ba

cd + d
(

−c
)

c
(

−b
)

+ da

]

=

[

ad − bc 0

0 ad − bc

]

=
(

ad − bc
)

[

1 0

0 1

]

=
(

ad − bc
)

I,

(

adj A
)

A =

[

d −b
−c a

] [

a b

c d

]

=

[

da +
(

−b
)

c db +
(

−b
)

d
(

−c
)

a + ac
(

−c
)

b + ad

]

=

[

ad − bc 0

0 ad − bc

]

=
(

ad − bc
)

[

1 0

0 1

]

=
(

ad − bc
)

I.

In short,

A
(

adj A
)

=
(

ad − bc
)

I, and
(

adjA
)

A =
(

ad − bc
)

I.

Now, suppose ad− bc 6= 0. Then you can divide the two sides of each of the above
two equalities:

A

(

1

ad − bc
adjA

)

= I, and

(

1

ad − bc
adjA

)

A = I.

x y x y

‖ ‖
A−1 A−1
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So, we indeed arrive at

AA−1 = I, and A−1A = I.

To highlight the result:

Fact 2. For A =

[

a b

c d

]

, suppose

detA 6= 0, namely, ad − bc 6= 0.

Then

AA−1 = I, and A−1A = I.

• Analogy:

“We always have

(∗∗) a a−1 = 1, and a−1 a = 1

for any number a, provided a 6= 0.
(

Right?
)

In the same token,

(##) AA−1 = I, and A−1 A = I

for any matrix A, provided detA 6= 0. These two, (∗∗) and

(##), are entirely parallel.”
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• The next level question. Consider two matrices

A =

[

a b

c d

]

and B =

[

p q

r s

]

.

Suppose AB = I. Then is it true

(1) BA = I?

(2) B = A−1, and A = B−1?

Answers. ‘True’, for both part (1) and part (2).

Proof of this requires a careful analysis. We know that the following is true:

(%) “Suppose a and b are both numbers
(

scalars
)

. Suppose ab = 1.

Then b = a−1, and a = b−1.”

Our question is a generalization of (%). So we extrapolate how we prove (%).

Extrapolation.

“First, ab = 1 forces a to be non-zero. Thus a−1 exists. Then

multiply a−1 to the two sides of ab = 1: Then you immediately

obtain b = a−1. Similarly, by multiplying b−1 instead of a−1 you will

obtain a = b−1. The very same logic can be employed for matrices

to pull the same conclusion for matrices, save that there are a

couple of points which prove to be subtle
(

#1 and #2 below
)

.”

Point of subtlety # 1: The extrapolation of the part

◦ “ ab = 1 forces a to be non-zero”.

The right extrapolation of this statement for matrices is

◦ “ AB = I forces A to have a non-zero determinant.”
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This latter statement is true. However, it is not that trivial. We need

to provide a proof of it.
(

Here we go again!
)

For that matter, we in

turn need to rely on a so-called “Product Formula”.

Point of subtlety # 2: The extrapolation of the part

◦ “multiply a−1 to the two sides of ab = 1 to get b = a−1.”

The right extrapolation of this statement for matrices is

◦ “multiply A−1 to the two sides of AB = I to get B = A−1.”

A couple of delicate points here: First you need to say you multiply

A−1 from the left, as in

A−1
(

AB
)

= A−1I.

Second, you want to say A−1
(

AB
)

is reduced to B. However,

technically speaking, in order to be able to safely claim that, you

need to know in advance

A−1
(

AB
)

=
(

A−1A
)

B.

This turns out to be true, indeed, more generally,

A
(

BC
)

=
(

AB
)

C

holds true for three matrices A, B and C. Now, this last cited fact is

something that requires a proof.
(

Here we go again!
)

This property

A
(

BC
)

=
(

AB
)

C is called the “Associativity Law”.
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§6. Product Formula. Associativity Law.

Formula 1 ( Product Formula for 222××× 222).

For A =

[

a b

c d

]

and B =

[

p q

r s

]

, we have

det
(

AB
)

=
(

detA
)(

detB
)

.

Example (that is in sync with Product Formula). Let

A =

[

2 1
−4 7

]

and B =

[

6 −3
5 −1

]

.

(

These two are just randomly picked.
)

Calculate detA and detB:

det A =

∣

∣

∣

∣

2 1
−4 7

∣

∣

∣

∣

= 2 · 7 − 1 ·
(

− 4
)

= 18,

det B =

∣

∣

∣

∣

6 −3
5 −1

∣

∣

∣

∣

= 6 ·
(

− 1
)

−
(

− 3
)

· 5 = 9.

Independently of these,

AB =

[

2 1
−4 7

] [

6 −3
5 −1

]

=

[

2 · 6 + 1 · 5 2 ·
(

− 3
)

+ 1 ·
(

− 1
)

(

− 4
)

· 6 + 7 · 5
(

− 4
)

·
(

− 3
)

+ 7 ·
(

− 1
)

]

=

[

17 −7
11 5

]

.
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Thus

det
(

AB
)

= 17 · 5 −
(

− 7
)

· 11 = 162.

To summarize,

det A = 18, det B = 9, det
(

AB
)

= 162.

We have 18 · 9 = 162, and this is consistent with the formula

det
(

AB
)

=
(

detA
)(

detB
)

.

Example (that is in sync with Product Formula). Let

A =

[

1 3
2 −1

]

and B =

[

2 1
4 5

]

.

(

Again these are random choices.
)

det A =

∣

∣

∣

∣

1 3
2 −1

∣

∣

∣

∣

= 1 ·
(

− 1
)

− 3 · 2 = −7,

det B =

∣

∣

∣

∣

2 1
4 5

∣

∣

∣

∣

= 2 · 5 − 1 · 4 = 6.

Independently of these,

AB =

[

1 3
2 −1

] [

2 1
4 5

]

=

[

1 · 2 + 3 · 4 1 · 1 + 3 · 5
2 · 2 +

(

− 1
)

· 4 2 · 1 +
(

− 1
)

· 5

]

=

[

14 16
0 −3

]

.
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Thus

det
(

AB
)

= 14 ·
(

− 3
)

− 16 · 0 = −42.

To summarize:

det A = −7, det B = 6, det
(

AB
)

= −42.

We have
(

−7
)

· 6 = −42, and this is consistent with the formula:

det
(

AB
)

=
(

detA
)(

detB
)

.

• We have to prove the statement using a general pair of matrices A and B :

A =

[

a b

c d

]

and B =

[

p q

r s

]

,

where a, b, c, d, p, q, r and s are arbitrary.

• On the one hand

detA =

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

= ad − bc, detB =

∣

∣

∣

∣

p q

r s

∣

∣

∣

∣

= ps − qr,

and on the other hand

AB =

[

ap + br aq + bs

cp + dr cq + ds

]

,

so

det
(

AB
)

=

∣

∣

∣

∣

ap + br aq + bs

cp + dr cq + ds

∣

∣

∣

∣

=
(

ap + br
)(

cq + ds
)

−
(

aq + bs
)(

cp + dr
)

,

so the statement is equivalent to the following:
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Formula 1′′′ ( Product Formula, spelt-out version, 222××× 222).

(

ap + br
)(

cq + ds
)

−
(

aq + bs
)(

cp + dr
)

(∗)
=
(

ad − bc
)(

ps − qr
)

.

Agree with the following:

“ In order to prove Formula 1, it suffices to prove (∗)
(

Formula 1′
)

. ”

Proof of (∗∗∗) (Formula 1′′′).

The left-hand side of (∗)

=
(

ap + br
)(

cq + ds
)

−
(

aq + bs
)(

cp + dr
)

=
(

apcq + apds + brcq + brds
)

−
(

aqcp + aqdr + bscp + bsdr
)

=
(

acpq + adps + bcqr + bdrs
)

−
(

acpq + adqr + bcps + bdrs
)

= adps + bcqr − adqr − bcps.

The right-hand side of (∗)

=
(

ad − bc
)(

ps − qr
)

= adps − adqr − bcps + bcqr

= adps + bcqr − adqr − bcps.

The above calculations show that the two sides of (∗) are equal. �
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Exercise (= “VI”; Exercise 1). A =

[

4 −2
3 −3

]

, and B =

[

6 5
8 3

]

,

calculate

(1) detA, (2) detB, (3)
(

detA
)(

detB
)

based on (1–2),

(4) AB, and (5) det
(

AB
)

based on (4).

Confirm that the answer for (3) and the answer for (5) coincide.

• We have just proved Product Formula. You may prematurely conclude that the
subject is “ad nauseum”. The truth is, the above formula has larger size counterparts,
and those will not be as rudimentary. Indeed, take a quick peek at how each of the
3 × 3 and the 4 × 4 counterparts looks like

(

below
)

. They probably don’t strike
you as trivial.

Product Formula (Spelt-out version, 333××× 333).

(

a1p1 + a2p2 + a3p3

)(

b1q1 + b2q2 + b3q3

)(

c1r1 + c2r2 + c3r3

)

+
(

a1q1 + a2q2 + a3q3

)(

b1r1 + b2r2 + b3r3

)(

c1p1 + c2p2 + c3p3

)

+
(

a1r1 + a2r2 + a3r3

)(

b1p1 + b2p2 + b3p3

)(

c1q1 + c2q2 + c3q3

)

−
(

a1r1 + a2r2 + a3r3

)(

b1q1 + b2q2 + b3q3

)(

c1p1 + c2p2 + c3p3

)

−
(

a1p1 + a2p2 + a3p3

)(

b1r1 + b2r2 + b3r3

)(

c1q1 + c2q2 + c3q3

)

−
(

a1q1 + a2q2 + a3q3

)(

b1p1 + b2p2 + b3p3

)(

c1r1 + c2r2 + c3r3

)

=
(

a1b2c3 + a2b3c1 + a3b1c2 − a3b2c1 − a1b3c2 − a2b1c3

)

·
(

p1q2r3 + p2q3r1 + p3q1r2 − p3q2r1 − p1q3r2 − p2q1r3

)

.
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Product Formula (Spelt-out version, 444××× 444).

(a1p1+a2q1+a3r1+a4s1)(b1p2+b2q2+b3r2+b4s2)(c1p3+c2q3+c3r3+c4s3)(d1p4+d2q4+d3r4+d4s4)

+(a1p1+a2q1+a3r1+a4s1)(b1p3+b2q3+b3r3+b4s3)(c1p4+c2q4+c3r4+c4s4)(d1p2+d2q2+d3r2+d4s2)

+(a1p1+a2q1+a3r1+a4s1)(b1p4+b2q4+b3r4+b4s4)(c1p2+c2q2+c3r2+c4s2)(d1p3+d2q3+d3r3+d4s3)

+(a1p2+a2q2+a3r2+a4s2)(b1p1+b2q1+b3r1+b4s1)(c1p4+c2q4+c3r4+c4s4)(d1p3+d2q3+d3r3+d4s3)

+(a1p2+a2q2+a3r2+a4s2)(b1p4+b2q4+b3r4+b4s4)(c1p3+c2q3+c3r3+c4s3)(d1p1+d2q1+d3r1+d4s1)

+(a1p2+a2q2+a3r2+a4s2)(b1p3+b2q3+b3r3+b4s3)(c1p1+c2q1+c3r1+c4s1)(d1p4+d2q4+d3r4+d4s4)

+(a1p3+a2q3+a3r3+a4s3)(b1p1+b2q1+b3r1+b4s1)(c1p2+c2q2+c3r2+c4s2)(d1p4+d2q4+d3r4+d4s4)

+(a1p3+a2q3+a3r3+a4s3)(b1p2+b2q2+b3r2+b4s2)(c1p4+c2q4+c3r4+c4s4)(d1p1+d2q1+d3r1+d4s1)

+(a1p3+a2q3+a3r3+a4s3)(b1p4+b2q4+b3r4+b4s4)(c1p1+c2q1+c3r1+c4s1)(d1p2+d2q2+d3r2+d4s2)

+(a1p4+a2q4+a3r4+a4s4)(b1p1+b2q1+b3r1+b4s1)(c1p3+c2q3+c3r3+c4s3)(d1p2+d2q2+d3r2+d4s2)

+(a1p4+a2q4+a3r4+a4s4)(b1p3+b2q3+b3r3+b4s3)(c1p2+c2q2+c3r2+c4s2)(d1p1+d2q1+d3r1+d4s1)

+(a1p4+a2q4+a3r4+a4s4)(b1p2+b2q2+b3r2+b4s2)(c1p1+c2q1+c3r1+c4s1)(d1p3+d2q3+d3r3+d4s3)

−(a1p1+a2q1+a3r1+a4s1)(b1p2+b2q2+b3r2+b4s2)(c1p4+c2q4+c3r4+c4s4)(d1p3+d2q3+d3r3+d4s3)

−(a1p1+a2q1+a3r1+a4s1)(b1p4+b2q4+b3r4+b4s4)(c1p3+c2q3+c3r3+c4s3)(d1p2+d2q2+d3r2+d4s2)

−(a1p1+a2q1+a3r1+a4s1)(b1p3+b2q3+b3r3+b4s3)(c1p2+c2q2+c3r2+c4s2)(d1p4+d2q4+d3r4+d4s4)

−(a1p2+a2q2+a3r2+a4s2)(b1p1+b2q1+b3r1+b4s1)(c1p3+c2q3+c3r3+c4s3)(d1p4+d2q4+d3r4+d4s4)

−(a1p2+a2q2+a3r2+a4s2)(b1p3+b2q3+b3r3+b4s3)(c1p4+c2q4+c3r4+c4s4)(d1p1+d2q1+d3r1+d4s1)

−(a1p2+a2q2+a3r2+a4s2)(b1p4+b2q4+b3r4+b4s4)(c1p1+c2q1+c3r1+c4s1)(d1p3+d2q3+d3r3+d4s3)

−(a1p3+a2q3+a3r3+a4s3)(b1p1+b2q1+b3r1+b4s1)(c1p4+c2q4+c3r4+c4s4)(d1p2+d2q2+d3r2+d4s2)

−(a1p3+a2q3+a3r3+a4s3)(b1p4+b2q4+b3r4+b4s4)(c1p2+c2q2+c3r2+c4s2)(d1p1+d2q1+d3r1+d4s1)

−(a1p3+a2q3+a3r3+a4s3)(b1p2+b2q2+b3r2+b4s2)(c1p1+c2q1+c3r1+c4s1)(d1p4+d2q4+d3r4+d4s4)

−(a1p4+a2q4+a3r4+a4s4)(b1p1+b2q1+b3r1+b4s1)(c1p2+c2q2+c3r2+c4s2)(d1p3+d2q3+d3r3+d4s3)

−(a1p4+a2q4+a3r4+a4s4)(b1p2+b2q2+b3r2+b4s2)(c1p3+c2q3+c3r3+c4s3)(d1p1+d2q1+d3r1+d4s1)

−(a1p4+a2q4+a3r4+a4s4)(b1p3+b2q3+b3r3+b4s3)(c1p1+c2q1+c3r1+c4s1)(d1p2+d2q2+d3r2+d4s2)

=
(

a1b2c3d4+a1b3c4d2+a1b4c2d3+a2b1c4d3+a2b4c3d1+a2b3c1d4

+a3b1c2d4+a3b2c4d1+a3b4c1d2+a4b1c3d2+a4b3c2d1+a4b2c1d3

−a1b2c4d3−a1b4c3d2−a1b3c2d4−a2b1c3d4−a2b3c4d1−a2b4c1d3

−a3b1c4d2−a3b4c2d1−a3b2c1d4−a4b1c2d3−a4b2c3d1−a4b3c1d2

)

·
(

p1q2r3s4+p1q3r4s2+p1q4r2s3+p2q1r4s3+p2q4r3s1+p2q3r1s4

+p3q1r2s4+p3q2r4s1+p3q4r1s2+p4q1r3s2+p4q3r2s1+p4q2r1s3

−p1q2r4s3−p1q4r3s2−p1q3r2s4−p2q1r3s4−p2q3r4s1−p2q4r1s3

−p3q1r4s2−p3q4r2s1y−p3q2r1s4−p4q1r2s3−p4q2r3s1−p4q3r1s2

)

.

41



Now, suppose I asked you to prove these, you probably cannot think of any

immediate way to go about. If you say your computer can handle it, I say this: The
above is only up to 4 × 4. The same formula for 5 × 5, 6 × 6, 7 × 7, ··· exist. The
expansion of the left-hand side, and the right-hand side, of the n × n counterpart
formula, before cancellations, involve the following number of terms:

nn · n!, and
(

n!
)2

,

respectively. These numbers for n = 3, 4, 5, 6, 7, 8 come out as

n = 3 =⇒ 162, 36.

n = 4 =⇒ 6144, 576.

n = 5 =⇒ 375000, 14400.

n = 6 =⇒ 33592320, 518400.

n = 7 =⇒ 4150656720, 25401600.

n = 8 =⇒ 676457349120, 1625702400.

· · ·· · ·· · ·

These are the numbers of terms your computer is supposed to deal with. These
numbers grow exponentially as n grows. As you can read off from the above table,
already for n = 8 the number nn · n! is a 12-digit number

(

an order of trillion
)

.
For n = 100 the corresponding number nn · n! is a 358-digit number. Sooner
or later it will go above your computer’s capability. Now, be that as it may, any
mathematical software you’ve heard of actually knows the Product Formula in any
size n. The next thing I say is important: That’s because the formula is known to

be true, by humans, because human mathematicians have logically proved it, in an

ex machina way. Then whoever came up with that software
(

or whoever is in charge

of updating that software
)

borrowed that knowledge and installed the formula on

the software. The computer itself does not have enough intelligence to generate that

proof of the formula. How to prove the formula, in an ex machina way, and things of

this nature, are what you are going to learn in this class: You are going to work on

things computers cannot replace. So far we haven’t even defined the determinants for

matrices larger than 3 × 3, or matrix multiplication for matrices larger than 2 × 2.
We need to do that first. Then how to prove Product Formula for n × n is a whole
different story altogether. That’s coming up. For the rest of today we switch gears.
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