Math 290 ELEMENTARY LINEAR ALGEBRA REVIEW OF LECTURES - VIII

September 18 (Mon), 2017

Instructor: Yasuyuki Kachi

Line \#: 25751.

§8. Matrix multiplication for the 3×3 Case.

Today's agenda: Multiplications involving 3×3 matrices. As a starter:

$$
\xlongequal{\text { The correct conversion of }}\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right]\left[\begin{array}{c}
p \\
q \\
r
\end{array}\right] \xlongequal{\text { is }}\left[\begin{array}{l}
a_{1} p+a_{2} q+a_{3} r \\
b_{1} p+b_{2} q+b_{3} r \\
c_{1} p+c_{2} q+c_{3} r
\end{array}\right] \text {. }
$$

Like last time, we must officially declare this to be the rule that is going to be enforced throughout:

- Rule.

$$
\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right]\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]=\left[\begin{array}{c}
a_{1} p+a_{2} q+a_{3} r \\
b_{1} p+b_{2} q+b_{3} r \\
c_{1} p+c_{2} q+c_{3} r
\end{array}\right] .
$$

Paraphrase:

$$
\begin{gathered}
A=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{c}
p \\
q \\
r
\end{array}\right] \\
\Longrightarrow \quad A \boldsymbol{x}=\left[\begin{array}{c}
a_{1} p+a_{2} q+a_{3} r \\
b_{1} p+b_{2} q+b_{3} r \\
c_{1} p+c_{2} q+c_{3} r
\end{array}\right] .
\end{gathered}
$$

- This one you could have easily guessed by extrapolating from the 2×2 case (the case A is 2×2 and x is 2×1, to be precise). It's just that three separate multiplications instead of two, every step of the way, and also there are three separate steps instead of two. Just in case, I want to offer the following breakdown:

Break-down. We are going to do

$$
\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right]\left[\begin{array}{c}
p \\
q \\
r
\end{array}\right]=\left[\begin{array}{|c}
\hline \square \\
\hline \hline \Delta
\end{array}\right]
$$

(i) To find \diamond, observe

$$
\left.\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right]\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]\right]=\left[\begin{array}{|}
\boxed{a_{1} p+a_{2} q+a_{3} r} \\
\hline \hline \boldsymbol{\text { か }} \\
\hline \hline
\end{array}\right] .
$$

(ii) To find $\boldsymbol{\uparrow}$, observe

$$
\left.\left[\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
\hline b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right]\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]\right]=\left[\begin{array}{|}
\hline a_{1} p+a_{2} q+a_{3} r \\
\hline \hline b_{1} p+b_{2} q+b_{3} r \\
\hline \hline \triangle
\end{array}\right] .
$$

(iii) To find \triangle, observe

$$
\left.\left[\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
\hline c_{1} & c_{2} & c_{3}
\end{array}\right]\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]\right]=\left[\begin{array}{|c|c|}
\hline a_{1} p+a_{2} q+a_{3} r \\
\hline \hline b_{1} p+b_{2} q+b_{3} r \\
\hline \hline c_{1} p+c_{2} q+c_{3} r \\
\hline
\end{array}\right] .
$$

Example 1. For $A=\left[\begin{array}{ccc}3 & -6 & 5 \\ -2 & 4 & 7 \\ -1 & 3 & 9\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right], \quad$ we have

$$
\begin{aligned}
A \boldsymbol{x} & =\left[\begin{array}{ccc}
3 & -6 & 5 \\
-2 & 4 & 7 \\
-1 & 3 & 9
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
3 \cdot 2+(-6) \cdot 3+5 \cdot 1 \\
(-2) \cdot 2+4 \cdot 3+7 \cdot 1 \\
(-1) \cdot 2+3 \cdot 3+9 \cdot 1
\end{array}\right]=\left[\begin{array}{c}
-7 \\
15 \\
16
\end{array}\right] .
\end{aligned}
$$

Exercise 1. Perform each of the following multiplications:
(1) $\left[\begin{array}{lll}4 & 0 & 3 \\ 0 & 6 & 5 \\ 1 & 2 & 0\end{array}\right]\left[\begin{array}{c}3 \\ 1 \\ -5\end{array}\right] . \quad(2) \quad A \boldsymbol{x}, \quad$ where $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{c}p \\ q \\ r\end{array}\right]$.
(3) $A x, \quad$ where $A=\left[\begin{array}{ccc}7 & 4 & -4 \\ -5 & -2 & 5 \\ 2 & 2 & 3\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{c}4 \\ -5 \\ 1\end{array}\right]$.

- Now we talk about multiplying a 3×3 matrix with another 3×3 matrix. Here is the rule that we hereby officially declare to enforce throughout:

Rule. $\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]\left[\begin{array}{lll}p_{1} & p_{2} & p_{3} \\ q_{1} & q_{2} & q_{3} \\ r_{1} & r_{2} & r_{3}\end{array}\right] \quad$ is calculated as

$$
\left[\begin{array}{ccc}
a_{1} p_{1}+a_{2} q_{1}+a_{3} r_{1} & a_{1} p_{2}+a_{2} q_{2}+a_{3} r_{2} & a_{1} p_{3}+a_{2} q_{3}+a_{3} r_{3} \\
b_{1} p_{1}+b_{2} q_{1}+b_{3} r_{1} & b_{1} p_{2}+b_{2} q_{2}+b_{3} r_{2} & b_{1} p_{3}+b_{2} q_{3}+b_{3} r_{3} \\
c_{1} p_{1}+c_{2} q_{1}+c_{3} r_{1} & c_{1} p_{2}+c_{2} q_{2}+c_{3} r_{2} & c_{1} p_{3}+c_{2} q_{3}+c_{3} r_{3}
\end{array}\right] .
$$

- Paraphrase:

$$
\begin{gathered}
A=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right], \quad B=\left[\begin{array}{ccc}
p_{1} & p_{2} & p_{3} \\
q_{1} & q_{2} & q_{3} \\
r_{1} & r_{2} & r_{3}
\end{array}\right] \\
\Longrightarrow A B=\left[\begin{array}{lll}
a_{1} p_{1}+a_{2} q_{1}+a_{3} r_{1} & a_{1} p_{2}+a_{2} q_{2}+a_{3} r_{2} & a_{1} p_{3}+a_{2} q_{3}+a_{3} r_{3} \\
b_{1} p_{1}+b_{2} q_{1}+b_{3} r_{1} & b_{1} p_{2}+b_{2} q_{2}+b_{3} r_{2} & b_{1} p_{3}+b_{2} q_{3}+b_{3} r_{3} \\
c_{1} p_{1}+c_{2} q_{1}+c_{3} r_{1} & c_{1} p_{2}+c_{2} q_{2}+c_{3} r_{2} & c_{1} p_{3}+c_{2} q_{3}+c_{3} r_{3}
\end{array}\right] .
\end{gathered}
$$

This is a little bit more complicated than the 2×2 case, though, again, this could have been easily extrapolated from the case A and B are 2×2. In case, let me offer the following break-down:

- Break-down: First and foremost, acknowledge the following:
A and B are both 3×3 matrices $\Longrightarrow A B$ is a 3×3 matrix.
In other words:

$$
\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right]\left[\begin{array}{lll}
p_{1} & p_{2} & p_{3} \\
q_{1} & q_{2} & q_{3} \\
r_{1} & r_{2} & r_{3}
\end{array}\right]=\left[\begin{array}{ll}
\square & \square \\
\hline \square & \boxed{ } \\
\hline \square & \boxed{\square} \\
\hline
\end{array}\right] .
$$

(i) Let us find \diamond in

$$
\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right]\left[\begin{array}{lll}
p_{1} & p_{2} & p_{3} \\
q_{1} & q_{2} & q_{3} \\
r_{1} & r_{2} & r_{3}
\end{array}\right]
$$

Since \diamond is in the top-left, accordingly highlight the portion of A and B, like

$$
\left.\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
\hline b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right]\left[\begin{array}{l}
p_{1} \\
q_{1}
\end{array}\right] \begin{array}{ll}
p_{2} & p_{3} \\
q_{2} & q_{3} \\
r_{1}
\end{array} r_{2} \quad r_{3} .\right] .
$$

\diamond is $\quad a_{1} p_{1}+a_{2} q_{1}+a_{3} r_{1}:$

$$
\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right]\left[\begin{array}{lll}
p_{1} & p_{2} & p_{3} \\
q_{1} & q_{2} & q_{3} \\
r_{1} & r_{2} & r_{3}
\end{array}\right]
$$

(ii) Next, let's find Ω in

$$
\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right]\left[\begin{array}{lll}
p_{1} & p_{2} & p_{3} \\
q_{1} & q_{2} & q_{3} \\
r_{1} & r_{2} & r_{3}
\end{array}\right]
$$

$$
=\left[\begin{array}{c}
\boxed{a_{1} p_{1}+a_{2} q_{1}+a_{3} r_{1}} \\
\hline \hline \\
\hline
\end{array}\right.
$$

∞

Since \bigcirc is the top-middle (top-row \& middle-column), accordingly highlight the portion of A and B, like

$$
\left[\begin{array}{lll}
\hline a_{1} & a_{2} & a_{3} \\
\hline b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right]\left[\begin{array}{c}
p_{1} \\
q_{1} \\
r_{1}
\end{array} \begin{array}{|cc}
p_{2} & p_{3} \\
q_{2} & q_{3} \\
r_{2}
\end{array}\right] .
$$

\bigcirc is $a_{1} p_{2}+a_{2} q_{2}+a_{3} r_{2}:$

$$
\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right]\left[\begin{array}{lll}
p_{1} & p_{2} & p_{3} \\
q_{1} & q_{2} & q_{3} \\
r_{1} & r_{2} & r_{3}
\end{array}\right]
$$

(iii) Similarly, we can find \& in

$$
\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right]\left[\begin{array}{lll}
p_{1} & p_{2} & p_{3} \\
q_{1} & q_{2} & q_{3} \\
r_{1} & r_{2} & r_{3}
\end{array}\right]
$$

as

$$
\left[\begin{array}{ccc}
\hline a_{1} & a_{2} & a_{3} \\
\hline b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right]\left[\begin{array}{ccc}
p_{1} & p_{2} & p_{3} \\
q_{1} & q_{2} & q_{3} \\
r_{1} & r_{2} & \\
r_{3}
\end{array}\right]
$$

$$
=\left[\begin{array}{c}
\boxed{a_{1} p_{1}+a_{2} q_{1}+a_{3} r_{1}} \\
\hline \hline \\
\hline
\end{array}\right.
$$

$a_{1} p_{2}+a_{2} q_{2}+a_{3} r_{2}$

(iv) Next, we can find $\boldsymbol{\oplus}$ in

$$
\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right]\left[\begin{array}{lll}
p_{1} & p_{2} & p_{3} \\
q_{1} & q_{2} & q_{3} \\
r_{1} & r_{2} & r_{3}
\end{array}\right]
$$

$$
=\left[\begin{array}{c}
\boxed{a_{1} p_{1}+a_{2} q_{1}+a_{3} r_{1}} \\
\hline \square \\
\hline
\end{array}\right.
$$

$a_{1} p_{2}+a_{2} q_{2}+a_{3} r_{2}$

$a_{1} p_{3}+a_{2} q_{3}+a_{3} r_{3}$

as
$\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ \left.\begin{array}{|lll}b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]\left[\begin{array}{lll}p_{1} \\ q_{1} & p_{2} & p_{3} \\ q_{2} & q_{3} \\ r_{1}\end{array}\right. & r_{2} & r_{3}\end{array}\right]$

$$
=\left[\begin{array}{|}
\hline a_{1} p_{1}+a_{2} q_{1}+a_{3} r_{1} \\
\hline \hline b_{1} p_{1}+b_{2} q_{1}+b_{3} r_{1} \\
\hline \hline \\
\hline
\end{array}\right.
$$

$a_{1} p_{2}+a_{2} q_{2}+a_{3} r_{2}$

$a_{1} p_{3}+a_{2} q_{3}+a_{3} r_{3}$

Now, the rest goes the same way. The following is the end result:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right]\left[\begin{array}{ccc}
p_{1} & p_{2} & p_{3} \\
q_{1} & q_{2} & q_{3} \\
r_{1} & r_{2} & r_{3}
\end{array}\right]} \\
& =\left[\begin{array}{lll}
a_{1} p_{1}+a_{2} q_{1}+a_{3} r_{1} & a_{1} p_{2}+a_{2} q_{2}+a_{3} r_{2} & a_{1} p_{3}+a_{2} q_{3}+a_{3} r_{3} \\
\hline \hline \hline b_{1} p_{1}+b_{2} q_{1}+b_{3} r_{1} & b_{1} p_{2}+b_{2} q_{2}+b_{3} r_{2} & b_{1} p_{3}+b_{2} q_{3}+b_{3} r_{3} \\
\hline \hline c_{1} p_{1}+c_{2} q_{1}+c_{3} r_{1} & c_{1} p_{2}+c_{2} q_{2}+c_{3} r_{2} & c_{1} p_{3}+c_{2} q_{3}+c_{3} r_{3} \\
\hline
\end{array}\right] .
\end{aligned}
$$

Example 2. For $A=\left[\begin{array}{ccc}1 & -1 & 7 \\ 2 & -1 & 8 \\ 3 & 1 & -1\end{array}\right], \quad B=\left[\begin{array}{ccc}1 & 1 & 2 \\ 2 & 1 & 1 \\ 1 & -3 & 2\end{array}\right], \quad$ we have A B

$$
=\left[\begin{array}{ccc}
1 & -1 & 7 \\
2 & -1 & 8 \\
3 & 1 & -1
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 2 \\
2 & 1 & 1 \\
1 & -3 & 2
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
1 \cdot 1+(-1) \cdot 2+7 \cdot 1 & 1 \cdot 1+(-1) \cdot 1+7 \cdot(-3) & 1 \cdot 2+(-1) \cdot 1+7 \cdot 2 \\
2 \cdot 1+(-1) \cdot 2+8 \cdot 1 & 2 \cdot 1+(-1) \cdot 1+8 \cdot(-3) & 2 \cdot 2+(-1) \cdot 1+8 \cdot 2 \\
3 \cdot 1+1 \cdot 2+(-1) \cdot 1 & 3 \cdot 1+1 \cdot 1+(-1) \cdot(-3) & 3 \cdot 2+1 \cdot 1+(-1) \cdot 2
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
6 & -21 & 15 \\
8 & -23 & 19 \\
4 & 7 & 5
\end{array}\right]
$$

$B A$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
1 & 1 & 2 \\
2 & 1 & 1 \\
1 & -3 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 7 \\
2 & -1 & 8 \\
3 & 1 & -1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 \cdot 1+1 \cdot 2+2 \cdot 3 & 1 \cdot(-1)+1 \cdot(-1)+2 \cdot 1 & 1 \cdot 7+1 \cdot 8+2 \cdot(-1) \\
2 \cdot 1+1 \cdot 2+1 \cdot 3 & 2 \cdot(-1)+1 \cdot(-1)+1 \cdot 1 & 2 \cdot 7+1 \cdot 8+1 \cdot(-1) \\
1 \cdot 1+(-3) \cdot 2+2 \cdot 3 & 1 \cdot(-1)+(-3) \cdot(-1)+2 \cdot 1 & 1 \cdot 7+(-3) \cdot 8+2 \cdot(-1)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
9 & 0 & 13 \\
7 & -2 & 21 \\
1 & 4 & -19
\end{array}\right] .
\end{aligned}
$$

So

$$
A B=\left[\begin{array}{ccc}
6 & -21 & 15 \\
8 & -23 & 19 \\
4 & 7 & 5
\end{array}\right], \quad B A=\left[\begin{array}{ccc}
9 & 0 & 13 \\
7 & -2 & 21 \\
1 & 4 & -19
\end{array}\right]
$$

So, once again, (just like the 2×2 case) $\xlongequal{\text { in general, } A B \text { and } B A \text { are not equal. }}$

Exercise 2. Calculate $A B$ and $B A$:
(1) $\quad A=\left[\begin{array}{ccc}2 & 1 & 3 \\ -2 & 2 & 3 \\ 0 & -1 & -3\end{array}\right], \quad B=\left[\begin{array}{ccc}4 & 3 & 2 \\ 1 & 3 & 1 \\ -1 & 2 & -1\end{array}\right]$.
(2) $\quad A=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right], \quad B=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$.
(3) $A=\left[\begin{array}{ccc}1 & 2 & 4 \\ 2 & 4 & 8 \\ 4 & 8 & 16\end{array}\right], \quad B=\left[\begin{array}{ccc}2 & -4 & 0 \\ -1 & 0 & 2 \\ 0 & 1 & -1\end{array}\right]$.
(4) $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1\end{array}\right], \quad B=\left[\begin{array}{lll}1 & -1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & 1\end{array}\right]$.

- The inverse matrix A^{-1}.

Next, let's revisit the inverse of 3×3 matrices. Remember that the following was thrown at the end of "Review of Lectures - III":

Inverse of a 3×3 matrix.

Let $A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]$. The inverse A^{-1} of A is the following matrix:

$$
A^{-1}=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right]^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A
$$

where

$$
\operatorname{det} A=a_{1} b_{2} c_{3}-a_{1} b_{3} c_{2}-a_{2} b_{1} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}-a_{3} b_{2} c_{1}
$$

and

$$
\operatorname{adj} A=\left[\begin{array}{lll}
+\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right| & -\left|\begin{array}{ll}
a_{2} & a_{3} \\
c_{2} & c_{3}
\end{array}\right| & +\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \\
-\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right| & +\left|\begin{array}{ll}
a_{1} & a_{3} \\
c_{1} & c_{3}
\end{array}\right| & -\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \\
+\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right| & -\left|\begin{array}{ll}
a_{1} & a_{2} \\
c_{1} & c_{2}
\end{array}\right| & +\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|
\end{array}\right]
$$

A^{-1} exists, provided $\operatorname{det} A \neq 0$.

The above inversion method was touched - if ever so briefly - at the end of "Review of Lectures - III". It would have been too much for one lecture to include this remark so I left it out, but there is something we have to be super-meticulous about. Actually I have already made the same remark for the 2×2 case (in page $3-4$ of "Review of Lectures - III"), so the following is a mere extrapolation. In the previous page, inside the smaller highlighted box,

- the part $\frac{1}{\operatorname{det} A} \quad$ is a scalar,
whereas
- the part $\operatorname{adj} A$ is a matrix.

Those two ingredients are being juxtaposed. It signifies
" a scalar being multiplied to a 3×3 matrix ".

We haven't officially defined it yet, which we must now. Here we go:

- Definition (Scalar multiplied to a matrix). Let s be a scalar. Then

$$
s\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right]=\left[\begin{array}{lll}
s a_{1} & s a_{2} & s a_{3} \\
s b_{1} & s b_{2} & s b_{3} \\
s c_{1} & s c_{2} & s c_{3}
\end{array}\right]
$$

Paraphrase:

$$
\text { If } \begin{array}{rlrl}
A= & {\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right] \quad \text { and } \quad s: \text { a scalar }} \\
& \Longrightarrow & s A=\left[\begin{array}{lll}
s a_{1} & s a_{2} & s a_{3} \\
s b_{1} & s b_{2} & s b_{3} \\
s c_{1} & s c_{2} & s c_{3}
\end{array}\right] .
\end{array}
$$

I trust you have been circumspect about this point - however minute - when you tried Exercise 5 in page 14 of "Review of Lextures - III'. Speaking of, I think this is a good place to revisit that exercise, so let me pull one of the questions therein:

Example 3. For

$$
A=\left[\begin{array}{ccc}
2 & 1 & -2 \\
5 & -4 & -1 \\
1 & -3 & 4
\end{array}\right]
$$

($=$ part (1) of Ecercise 5, in "Review of Lextures - III"), let's find its inverse A^{-1}.

Step 1. First find the determinant of A, as follows:

$$
\begin{aligned}
\operatorname{det} A= & 2 \cdot\left|\begin{array}{cc}
-4 & -1 \\
-3 & 4
\end{array}\right|-1 \cdot\left|\begin{array}{cc}
5 & -1 \\
1 & 4
\end{array}\right|+(-2) \cdot\left|\begin{array}{cc}
5 & -4 \\
1 & -3
\end{array}\right| \\
& =2 \cdot(-19)-1 \cdot(-21)+(-2) \cdot(-11) \\
& =-38-21+22=-37 .
\end{aligned}
$$

Step 2. Second find the adjoint matrix $\operatorname{adj} A$ of A as follows:

$$
\begin{aligned}
\operatorname{adj} A & =\left[\begin{array}{lll}
+\left|\begin{array}{cc}
-4 & -1 \\
-3 & 4
\end{array}\right| & -\left|\begin{array}{cc}
1 & -2 \\
-3 & 4
\end{array}\right| & +\left|\begin{array}{cc}
1 & -2 \\
-4 & -1
\end{array}\right| \\
-\left|\begin{array}{cc}
5 & -1 \\
1 & 4
\end{array}\right| & +\left|\begin{array}{cc}
2 & -2 \\
1 & 4
\end{array}\right| & -\left|\begin{array}{cc}
2 & -2 \\
5 & -1
\end{array}\right| \\
+\left|\begin{array}{cc}
5 & -4 \\
1 & -3
\end{array}\right| & -\left|\begin{array}{cc}
2 & 1 \\
1 & -3
\end{array}\right| & +\left|\begin{array}{cc}
2 & 1 \\
5 & -4
\end{array}\right|
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-19 & 2 & -9 \\
-21 & 10 & -8 \\
-11 & 7 & -13
\end{array}\right] .
\end{aligned}
$$

To conclude,

$$
\begin{aligned}
A^{-1} & =\frac{1}{-37}\left[\begin{array}{ccc}
-19 & 2 & -9 \\
-21 & 10 & -8 \\
-11 & 7 & -13
\end{array}\right] \\
& =\frac{1}{37}\left[\begin{array}{ccc}
19 & -2 & 9 \\
21 & -10 & 8 \\
11 & -7 & 13
\end{array}\right] \\
& \left.=\left[\begin{array}{ccc}
\frac{19}{37} & \frac{-2}{37} & \frac{9}{37} \\
\frac{21}{37} & \frac{-10}{37} & \frac{8}{37} \\
\frac{11}{37} & \frac{-7}{37} & \frac{13}{37}
\end{array}\right]\right)
\end{aligned}
$$

- Let me do another example (not from the past exercises):

Example 4. For

$$
A=\left[\begin{array}{lll}
1 & -3 & 2 \\
3 & -5 & 2 \\
6 & -6 & 2
\end{array}\right]
$$

let's find its inverse A^{-1}.

Step 1. First find the determinant of A, as follows:

$$
\begin{aligned}
\operatorname{det} A= & 1 \cdot\left|\begin{array}{ll}
-5 & 2 \\
-6 & 2
\end{array}\right|-(-3) \cdot\left|\begin{array}{ll}
3 & 2 \\
6 & 2
\end{array}\right|+2 \cdot\left|\begin{array}{cc}
3 & -5 \\
6 & -6
\end{array}\right| \\
& =1 \cdot 2-(-3) \cdot(-6)+2 \cdot 12 \\
& =2-18+24=8 .
\end{aligned}
$$

Step 2.

$$
\begin{aligned}
\operatorname{adj} A=\left[\begin{array}{lll}
+\left|\begin{array}{ll}
-5 & 2 \\
-6 & 2
\end{array}\right| & -\left|\begin{array}{ll}
-3 & 2 \\
-6 & 2
\end{array}\right| & +\left|\begin{array}{ll}
-3 & 2 \\
-5 & 2
\end{array}\right| \\
-\left|\begin{array}{ll}
3 & 2 \\
6 & 2
\end{array}\right| & +\left|\begin{array}{ll}
1 & 2 \\
6 & 2
\end{array}\right| & -\left|\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right| \\
+\left|\begin{array}{ll}
3 & -5 \\
6 & -6
\end{array}\right| & -\left|\begin{array}{ll}
1 & -3 \\
6 & -6
\end{array}\right| & +\left|\begin{array}{ll}
1 & -3 \\
3 & -5
\end{array}\right|
\end{array}\right] \\
=\left[\begin{array}{ccc}
2 & -6 & 4 \\
6 & -10 & 4 \\
12 & -12 & 4
\end{array}\right]
\end{aligned}
$$

To conclude,

$$
\begin{aligned}
A^{-1} & =\frac{1}{8}\left[\begin{array}{ccc}
2 & -6 & 4 \\
6 & -10 & 4 \\
12 & -12 & 4
\end{array}\right] \\
& =\frac{1}{4}\left[\begin{array}{lll}
1 & -3 & 2 \\
3 & -5 & 2 \\
6 & -6 & 2
\end{array}\right] \\
& \left.=\left[\begin{array}{ccc}
\frac{1}{4} & \frac{-3}{4} & \frac{1}{2} \\
\frac{3}{4} & \frac{-5}{4} & \frac{1}{2} \\
\frac{3}{2} & \frac{-3}{2} & \frac{1}{2}
\end{array}\right]\right)
\end{aligned}
$$

Note. Realize that, in this example, A^{-1} equals $\frac{1}{4} A$. This happens rarely.

- The 3×3 identity matrix.

Recall that 2×2 identity matrix was $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. What would be its 3×3 counterpart? Yes, it is

$$
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

We call it the 3×3 identity matrix. If you want to be meticuous, you can denote it I_{3} to indicate the size. The following two facts are in sync with the 2×2 case:

Fact 1. For $I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \quad$ and $\quad A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right], \quad$ we have

$$
I A=A, \quad \text { and } \quad A I=A
$$

Fact 2. For $A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right], \quad$ suppose

$$
\operatorname{det} A \neq 0
$$

Then

$$
A A^{-1}=I, \quad \text { and } \quad A^{-1} A=I
$$

Exercise 3. Prove Fact 1 and Fact 2 above (brute-force calculation).

- Gaussian elimination.

One more stuff before wrapping up today's session. You probably remember the name "Gaussian elimination method", as I mentioned it several times over the course of the semester. I alluded that we are going to cover it at some point. That's going to happen in the next lecture. (Hooray!) I thought spending the last ten or so minutes to give some sneak preview of it wouldn't hurt. The above way of finding A^{-1} involves a lot of calculations. Good news: There is a way to reduce the amount of work when A is a concrete matrix filled by numbers, and that's "Gaussian elimination method". Before full disclosure, I suggest we look at some archetypal examples of "Gaussian elimination method". What's potentially confusing is, such (what I would call) archetypal examples - such as Example 5 below - make no direct reference to the inverse of a matrix. So don't get freaked out the following example may appear to have nothing to do with inverting a matrix. I will explain everything in the forthcoming lectures, how "Gaussian elimination method" has a bearing on the business of inverting matrices (see "Review of Lectures - IX"; page 6-10). Below is a kind that you are all familiar with from high school, yet it best captures the essence of "Gaussian elimination method".

Example 5. Consider the following system of linear equations

$$
\left\{\begin{aligned}
x+y+z & =2 \\
-x+3 y+2 z & =8 \\
4 x+y & =4
\end{aligned}\right.
$$

Let's solve this system brute-force, without relying on any formula whatsoever. It goes step-by-step .

Step 1. Multiply 2 to the first equation in the system sidewise. The result is

$$
2 x+2 y+2 z=4
$$

Step 2. Subtract it from the second equation in the given system sidewise. The result is

$$
-3 x+y=4
$$

Step 3. Subtract it from the third equation in the given system sidewise. The result is

$$
7 x=0
$$

Step 4. Multiply $\frac{1}{7}$ to the two sides. The result is

$$
x=0 .
$$

Step 5. Go back to Step 2:

$$
-3 x+y=4
$$

Substitute the outcome of Step 4: $x=0$. The result is

$$
y=4
$$

Step 6. Go back to the first equation in the original system:

$$
x+y+z=2
$$

Substitute the outcomes of Step 4 and Step 5: $x=0, y=4$. The result is

$$
4+z=2
$$

Solve it for z :

$$
z=-2
$$

In sum, we have obtained the solution

$$
(x, y, z)=(0,4,-2)
$$

- And that was some elementary stuff. But like I said, this example fairly depicts the flavor of the "Gaussian elimination method". Our next job is to do exactly the same but using matrices. - To be continued.

