
Math 290 ELEMENTARY LINEAR ALGEBRA

REVIEW OF LECTURES – VIII

September 18 (Mon), 2017

Instructor: Yasuyuki Kachi

Line #: 25751.

§8. Matrix multiplication for the 3 × 3 case.

Today’s agenda: Multiplications involving 3 × 3 matrices. As a starter:

The correct conversion of





a1 a2 a3

b1 b2 b3

c1 c2 c3









p

q

r



 is





a1p + a2q + a3r

b1p + b2q + b3r

c1p + c2q + c3r



 .

Like last time, we must officially declare this to be the rule that is going to be
enforced throughout:

• Rule.





a1 a2 a3

b1 b2 b3

c1 c2 c3









p

q

r



 =





a1p + a2q + a3r

b1p + b2q + b3r

c1p + c2q + c3r



 .

Paraphrase:

A =





a1 a2 a3

b1 b2 b3
c1 c2 c3



, xxx =





p

q

r





=⇒ Axxx =





a1p + a2q + a3r

b1p + b2q + b3r

c1p + c2q + c3r





.

• This one you could have easily guessed by extrapolating from the 2 × 2 case
(

the case A is 2 × 2 and xxx is 2 × 1, to be precise
)

. It’s just that three separate
multiplications instead of two, every step of the way, and also there are three separate
steps instead of two. Just in case, I want to offer the following breakdown:
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Break-down. We are going to do





a1 a2 a3

b1 b2 b3
c1 c2 c3









p

q

r



 =











♦

♠

△











.

(i) To find ♦, observe

a1 a2 a3




p

q

r







 b1 b2 b3
c1 c2 c3











 =











a1p + a2q + a3r

♠











.

(ii) To find ♠, observe

b1 b2 b3





p

q

r









a1 a2 a3

c1 c2 c3











 =











a1p + a2q + a3r

b1p + b2q + b3r

△











.

(iii) To find △, observe





p

q

r









a1 a2 a3
b1 b2 b3











 =











a1p + a2q + a3r

b1p + b2q + b3r

c1p + c2q + c3r











.
c1 c2 c3

Example 1. For A =





3 −6 5

−2 4 7

−1 3 9



 , xxx =





2

3

1



 , we have

Axxx =





3 −6 5

−2 4 7

−1 3 9









2

3

1





=







3 · 2 +
(

−6
)

· 3 + 5 · 1
(

−2
)

· 2 + 4 · 3 + 7 · 1
(

−1
)

· 2 + 3 · 3 + 9 · 1






=





−7

15

16



 .
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Exercise 1. Perform each of the following multiplications:

(1)





4 0 3

0 6 5

1 2 0









3

1

−5



. (2) Axxx, where A =





0 1 0

0 0 1

1 0 0



, xxx =





p

q

r



.

(3) Axxx, where A =





7 4 −4

−5 −2 5

2 2 3



, xxx =





4

−5

1



.

• Now we talk about multiplying a 3 × 3 matrix with another 3 × 3 matrix. Here

is the rule that we hereby officially declare to enforce throughout:

Rule.





a1 a2 a3
b1 b2 b3
c1 c2 c3









p1 p2 p3
q1 q2 q3
r1 r2 r3



 is calculated as







a1p1 + a2q1 + a3r1 a1p2 + a2q2 + a3r2 a1p3 + a2q3 + a3r3

b1p1 + b2q1 + b3r1 b1p2 + b2q2 + b3r2 b1p3 + b2q3 + b3r3

c1p1 + c2q1 + c3r1 c1p2 + c2q2 + c3r2 c1p3 + c2q3 + c3r3







.

• Paraphrase:

A =





a1 a2 a3
b1 b2 b3
c1 c2 c3



, B =





p1 p2 p3
q1 q2 q3
r1 r2 r3





=⇒ AB =







a1p1 + a2q1 + a3r1 a1p2 + a2q2 + a3r2 a1p3 + a2q3 + a3r3

b1p1 + b2q1 + b3r1 b1p2 + b2q2 + b3r2 b1p3 + b2q3 + b3r3

c1p1 + c2q1 + c3r1 c1p2 + c2q2 + c3r2 c1p3 + c2q3 + c3r3





 .

This is a little bit more complicated than the 2× 2 case, though, again, this could
have been easily extrapolated from the case A and B are 2 × 2. In case, let me
offer the following break-down:
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• Break-down: First and foremost, acknowledge the following:

A and B are both 3 × 3 matrices =⇒ AB is a 3 × 3 matrix.

In other words:





a1 a2 a3
b1 b2 b3
c1 c2 c3









p1 p2 p3
q1 q2 q3
r1 r2 r3



 =












.

(i) Let us find ♦ in





a1 a2 a3
b1 b2 b3
c1 c2 c3









p1 p2 p3
q1 q2 q3
r1 r2 r3





=











♦










.

Since ♦ is in the top-left, accordingly highlight the portion of A and B, like

a1 a2 a3


 b1 b2 b3
c1 c2 c3









p2 p3
q2 q3
r2 r3









p1
q1
r1





.

♦ is a1p1 + a2q1 + a3r1:





a1 a2 a3
b1 b2 b3
c1 c2 c3









p1 p2 p3
q1 q2 q3
r1 r2 r3





=











a1p1 + a2q1 + a3r1











.
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(ii) Next, let’s find ♥ in





a1 a2 a3
b1 b2 b3
c1 c2 c3









p1 p2 p3
q1 q2 q3
r1 r2 r3





=











a1p1 + a2q1 + a3r1 ♥










Since ♥ is the top-middle
(

top-row & middle-column
)

, accordingly highlight the

portion of A and B, like

a1 a2 a3


 b1 b2 b3
c1 c2 c3









p1 p3
q1 q3
r1 r3









p2
q2
r2





.

♥ is a1p2 + a2q2 + a3r2:





a1 a2 a3
b1 b2 b3
c1 c2 c3









p1 p2 p3
q1 q2 q3
r1 r2 r3





=











a1p1 + a2q1 + a3r1 a1p2 + a2q2 + a3r2











.
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(iii) Similarly, we can find ♣ in





a1 a2 a3
b1 b2 b3
c1 c2 c3









p1 p2 p3
q1 q2 q3
r1 r2 r3





=











a1p1 + a2q1 + a3r1 a1p2 + a2q2 + a3r2 ♣










as

a1 a2 a3


 b1 b2 b3
c1 c2 c3









p1 p2
q1 q2
r1 r2









p3
q3
r3





=











a1p1 + a2q1 + a3r1 a1p2 + a2q2 + a3r2 a1p3 + a2q3 + a3r3











.

(iv) Next, we can find ♠ in





a1 a2 a3
b1 b2 b3
c1 c2 c3









p1 p2 p3
q1 q2 q3
r1 r2 r3





=











a1p1 + a2q1 + a3r1 a1p2 + a2q2 + a3r2 a1p3 + a2q3 + a3r3

♠











as
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b1 b2 b3





a1 a2 a3

c1 c2 c3









p2 p3
q2 q3
r2 r3









p1
q1
r1





=











a1p1 + a2q1 + a3r1 a1p2 + a2q2 + a3r2 a1p3 + a2q3 + a3r3

b1p1 + b2q1 + b3r1











.

Now, the rest goes the same way. The following is the end result:





a1 a2 a3
b1 b2 b3
c1 c2 c3









p1 p2 p3
q1 q2 q3
r1 r2 r3





=











a1p1 + a2q1 + a3r1 a1p2 + a2q2 + a3r2 a1p3 + a2q3 + a3r3

b1p1 + b2q1 + b3r1 b1p2 + b2q2 + b3r2 b1p3 + b2q3 + b3r3

c1p1 + c2q1 + c3r1 c1p2 + c2q2 + c3r2 c1p3 + c2q3 + c3r3











.

Example 2. For A =





1 −1 7
2 −1 8
3 1 −1



 , B =





1 1 2
2 1 1
1 −3 2



 , we have

AB

=





1 −1 7
2 −1 8
3 1 −1









1 1 2
2 1 1
1 −3 2





=









1 ·1 +
(

−1
)

·2 + 7 ·1 1 ·1 +
(

−1
)

·1 + 7 ·
(

−3
)

1 ·2 +
(

−1
)

·1 + 7 ·2

2 ·1 +
(

−1
)

·2 + 8 ·1 2 ·1 +
(

−1
)

·1 + 8 ·
(

−3
)

2 ·2 +
(

−1
)

·1 + 8 ·2

3 ·1 + 1 ·2 +
(

−1
)

·1 3 ·1 + 1 ·1 +
(

−1
)

·
(

−3
)

3 ·2 + 1 ·1 +
(

−1
)

·2









=





6 −21 15
8 −23 19
4 7 5



 ,
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BA

=





1 1 2
2 1 1
1 −3 2









1 −1 7
2 −1 8
3 1 −1





=









1 ·1 + 1 ·2 + 2 ·3 1 ·
(

−1
)

+ 1 ·
(

−1
)

+ 2 ·1 1 ·7 + 1 ·8 + 2 ·
(

−1
)

2 ·1 + 1 ·2 + 1 ·3 2 ·
(

−1
)

+ 1 ·
(

−1
)

+ 1 ·1 2 ·7 + 1 ·8 + 1 ·
(

−1
)

1·1 +
(

−3
)

·2 + 2·3 1·
(

−1
)

+
(

−3
)

·
(

−1
)

+ 2·1 1·7 +
(

−3
)

·8 + 2·
(

−1
)









=





9 0 13
7 −2 21
1 4 −19



 .

So

AB =





6 −21 15
8 −23 19
4 7 5



 , BA =





9 0 13
7 −2 21
1 4 −19



 .

So, once again,
(

just like the 2 × 2 case
)

in general, AB and BA are not equal.

Exercise 2. Calculate AB and BA:

(1) A =





2 1 3
−2 2 3
0 −1 −3



, B =





4 3 2
1 3 1
−1 2 −1



.

(2) A =





0 0 1
0 1 0
1 0 0



, B =





1 2 3
4 5 6
7 8 9



.

(3) A =





1 2 4
2 4 8
4 8 16



, B =





2 −4 0
−1 0 2
0 1 −1



.

(4) A =





1 −1 1
−1 1 −1
1 −1 1



, B =





1 −1 1
1 −1 1
1 −1 1



.
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• The inverse matrix A−1.

Next, let’s revisit the inverse of 3× 3 matrices. Remember that the following was
thrown at the end of “Review of Lectures — III”:

Inverse of a 333××× 333 matrix.

Let A =





a1 a2 a3

b1 b2 b3
c1 c2 c3



. The inverse A−1 of A is the following matrix:

A−1 =





a1 a2 a3

b1 b2 b3
c1 c2 c3





−1

=
1

detA
adjA,

where

detA = a1b2c3 − a1b3c2 − a2b1c3 + a2b3c1 + a3b1c2 − a3b2c1,

and

adjA =























+

∣

∣

∣

∣

b2 b3

c2 c3

∣

∣

∣

∣

−

∣

∣

∣

∣

a2 a3

c2 c3

∣

∣

∣

∣

+

∣

∣

∣

∣

a2 a3

b2 b3

∣

∣

∣

∣

−

∣

∣

∣

∣

b1 b3

c1 c3

∣

∣

∣

∣

+

∣

∣

∣

∣

a1 a3

c1 c3

∣

∣

∣

∣

−

∣

∣

∣

∣

a1 a3

b1 b3

∣

∣

∣

∣

+

∣

∣

∣

∣

b1 b2
c1 c2

∣

∣

∣

∣

−

∣

∣

∣

∣

a1 a2
c1 c2

∣

∣

∣

∣

+

∣

∣

∣

∣

a1 a2
b1 b2

∣

∣

∣

∣























.

A−1 exists, provided detA 6= 0.
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The above inversion method was touched — if ever so briefly — at the end of
“Review of Lectures – III”. It would have been too much for one lecture to include
this remark so I left it out, but there is something we have to be super-meticulous
about. Actually I have already made the same remark for the 2 × 2 case

(

in page

3–4 of “Review of Lectures – III”
)

, so the following is a mere extrapolation. In the
previous page, inside the smaller highlighted box,

◦ the part
1

detA
is a scalar,

whereas

◦ the part adjA is a matrix.

Those two ingredients are being juxtaposed. It signifies

“ a scalar being multiplied to a 3 × 3 matrix ”.

We haven’t officially defined it yet, which we must now. Here we go:

• Definition (Scalar multiplied to a matrix). Let s be a scalar. Then

s





a1 a2 a3
b1 b2 b3
c1 c2 c3



 =





sa1 sa2 sa3
sb1 sb2 sb3
sc1 sc2 sc3



.

Paraphrase:

If A =





a1 a2 a3

b1 b2 b3
c1 c2 c3



 and s : a scalar

=⇒ sA =





sa1 sa2 sa3
sb1 sb2 sb3
sc1 sc2 sc3



.
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I trust you have been circumspect about this point — however minute — when
you tried Exercise 5 in page 14 of “Review of Lextures — III’. Speaking of, I think
this is a good place to revisit that exercise, so let me pull one of the questions therein:

Example 3. For

A =







2 1 −2

5 −4 −1

1 −3 4







(

= part (1) of Ecercise 5, in “Review of Lextures — III”
)

, let’s find its inverse A−1.

Step 1. First find the determinant of A, as follows:

detA = 2 ·

∣

∣

∣

∣

−4 −1
−3 4

∣

∣

∣

∣

− 1 ·

∣

∣

∣

∣

5 −1
1 4

∣

∣

∣

∣

+
(

−2
)

·

∣

∣

∣

∣

5 −4
1 −3

∣

∣

∣

∣

= 2 ·
(

−19
)

− 1 ·
(

−21
)

+
(

−2
)

·
(

−11
)

= −38 − 21 + 22 = −37.

Step 2. Second find the adjoint matrix adjA of A as follows:

adjA =































+

∣

∣

∣

∣

−4 −1
−3 4

∣

∣

∣

∣

−

∣

∣

∣

∣

1 −2
−3 4

∣

∣

∣

∣

+

∣

∣

∣

∣

1 −2
−4 −1

∣

∣

∣

∣

−

∣

∣

∣

∣

5 −1
1 4

∣

∣

∣

∣

+

∣

∣

∣

∣

2 −2
1 4

∣

∣

∣

∣

−

∣

∣

∣

∣

2 −2
5 −1

∣

∣

∣

∣

+

∣

∣

∣

∣

5 −4
1 −3

∣

∣

∣

∣

−

∣

∣

∣

∣

2 1
1 −3

∣

∣

∣

∣

+

∣

∣

∣

∣

2 1
5 −4

∣

∣

∣

∣































=





−19 2 −9
−21 10 −8
−11 7 −13



 .
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To conclude,

A−1 =
1

−37





−19 2 −9
−21 10 −8
−11 7 −13





=
1

37





19 −2 9
21 −10 8
11 −7 13

















=













19

37

−2

37

9

37

21

37

−10

37

8

37

11

37

−7

37

13

37

























.

• Let me do another example
(

not from the past exercises
)

:

Example 4. For

A =





1 −3 2
3 −5 2
6 −6 2



 ,

let’s find its inverse A−1.

Step 1. First find the determinant of A, as follows:

detA = 1 ·

∣

∣

∣

∣

−5 2
−6 2

∣

∣

∣

∣

−
(

−3
)

·

∣

∣

∣

∣

3 2
6 2

∣

∣

∣

∣

+ 2 ·

∣

∣

∣

∣

3 −5
6 −6

∣

∣

∣

∣

= 1 · 2 −
(

−3
)

·
(

−6
)

+ 2 · 12

= 2 − 18 + 24 = 8.
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Step 2.

adjA =































+

∣

∣

∣

∣

−5 2
−6 2

∣

∣

∣

∣

−

∣

∣

∣

∣

−3 2
−6 2

∣

∣

∣

∣

+

∣

∣

∣

∣

−3 2
−5 2

∣

∣

∣

∣

−

∣

∣

∣

∣

3 2
6 2

∣

∣

∣

∣

+

∣

∣

∣

∣

1 2
6 2

∣

∣

∣

∣

−

∣

∣

∣

∣

1 2
3 2

∣

∣

∣

∣

+

∣

∣

∣

∣

3 −5
6 −6

∣

∣

∣

∣

−

∣

∣

∣

∣

1 −3
6 −6

∣

∣

∣

∣

+

∣

∣

∣

∣

1 −3
3 −5

∣

∣

∣

∣































=





2 −6 4
6 −10 4
12 −12 4



 .

To conclude,

A−1 =
1

8





2 −6 4
6 −10 4
12 −12 4





=
1

4





1 −3 2
3 −5 2
6 −6 2

















=













1

4

−3

4

1

2

3

4

−5

4

1

2

3

2

−3

2

1

2

























.

Note. Realize that, in this example, A−1 equals
1

4
A. This happens rarely.
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• The 333××× 333 identity matrix.

Recall that 2 × 2 identity matrix was

[

1 0
0 1

]

. What would be its 3 × 3

counterpart? Yes, it is

I =





1 0 0
0 1 0
0 0 1



.

We call it the 3× 3 identity matrix. If you want to be meticuous, you can denote it
I3 to indicate the size. The following two facts are in sync with the 2 × 2 case:

Fact 1. For I =





1 0 0

0 1 0

0 0 1



 and A =





a1 a2 a3

b1 b2 b3
c1 c2 c3



, we have

IA = A, and AI = A.

Fact 2. For A =





a1 a2 a3

b1 b2 b3
c1 c2 c3



, suppose

detA 6= 0.

Then

AA−1 = I, and A−1A = I.
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Exercise 3. Prove Fact 1 and Fact 2 above
(

brute-force calculation
)

.

• Gaussian elimination.

One more stuff before wrapping up today’s session. You probably remember the
name “Gaussian elimination method”, as I mentioned it several times over the course
of the semester. I alluded that we are going to cover it at some point. That’s going to
happen in the next lecture.

(

Hooray!
)

I thought spending the last ten or so minutes

to give some sneak preview of it wouldn’t hurt. The above way of finding A−1

involves a lot of calculations. Good news: There is a way to reduce the amount of
work when A is a concrete matrix filled by numbers, and that’s “Gaussian elimination
method”. Before full disclosure, I suggest we look at some archetypal examples of
“Gaussian elimination method”. What’s potentially confusing is, such

(

what I would

call
)

archetypal examples — such as Example 5 below — make no direct reference
to the inverse of a matrix. So don’t get freaked out the following example may
appear to have nothing to do with inverting a matrix. I will explain everything in
the forthcoming lectures, how “Gaussian elimination method” has a bearing on the
business of inverting matrices

(

see “Review of Lectures – IX”; page 6–10
)

. Below is
a kind that you are all familiar with from high school, yet it best captures the essence
of “Gaussian elimination method”.

Example 5. Consider the following system of linear equations















x + y + z = 2,

− x + 3y + 2z = 8,

4x + y = 4.

Let’s solve this system brute-force, without relying on any formula whatsoever.
It goes step-by-step .

Step 1. Multiply 2 to the first equation in the system sidewise. The result is

2x + 2y + 2z = 4.

Step 2. Subtract it from the second equation in the given system sidewise. The

result is

−3x + y = 4.
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Step 3. Subtract it from the third equation in the given system sidewise. The

result is

7x = 0.

Step 4. Multiply
1

7
to the two sides. The result is

x = 0.

Step 5. Go back to Step 2:

−3x + y = 4.

Substitute the outcome of Step 4: x = 0. The result is

y = 4.

Step 6. Go back to the first equation in the original system:

x + y + z = 2.

Substitute the outcomes of Step 4 and Step 5: x = 0, y = 4. The result is

4 + z = 2.

Solve it for z:

z = −2.

In sum, we have obtained the solution

(

x, y, z
)

=
(

0, 4, −2
)

.

• And that was some elementary stuff. But like I said, this example fairly depicts
the flavor of the “Gaussian elimination method”. Our next job is to do exactly the
same but using matrices. — To be continued.
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