
Math 290 ELEMENTARY LINEAR ALGEBRA

REVIEW OF LECTURES – VI

September 11 (Mon), 2017

Instructor: Yasuyuki Kachi

Line #: 25751.

§6. Product Formula. Associativity Law.

As promised, we cover two items today —

◦ [a] Product Formula. ◦ [b] Associativity Law.

• [a] Product Formula.

Up until now our lectures have been centered around two things:

(i) Determinants
(

introduced in “Review of Lectures – II”
)

; and

(ii) Matrix multiplications
(

introduced in “Review of Lectures – IV”
)

.

These two concepts emerged from two different sources. So far we haven’t seen them
intermingled except the formation of the inverse matrix A−1 somehow involves a
determinant

(

(i)
)

, whereas the inverse matrix is nothing but the matrix analog of
the reciprocal of numbers, so technically it can also be within the framework of matrix
multiplications

(

(ii)
)

. Still that’s a tenuous connection between (i) and (ii), so to
speak. So you might have had an impression this class merely offers some mishmash
of ideas in an omnibus style. Now, ‘Product Formula’

(

see page 4
)

postulates, on
the contrary, that those two notions (i) and (ii) totally go together, they “couldn’t be
more compatible”. And that’s just a tiny snapshot of how this class goes — so far
you guys are learning a lot of miscellaneous stuffs, but count that ultimately those
pieces will crystallize into one integrated mass of knowledge. What makes such an
integration possible is this vital concept in linear algebra, on which everything else
ultimately hinges: “Abstract vector spaces”, which is also naturally accompanied
by the notion of “linearity”. You’ll hear more on that once the second-half of the
semester kicks off. That’s what we are aiming at.

So, ‘Product Formula’ exemplifies the mutual affinity between (i) determinants,
and (ii) matrix multiplications. Let me use some examples to illustrate it:
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Example 1 (that is in sync with Product Formula). Let

A =

[

2 1
−4 7

]

and B =

[

6 −3
5 −1

]

.

(

These two are just randomly picked.
)

Let’s calculate detA and detB:

det A =

∣

∣

∣

∣

2 1
−4 7

∣

∣

∣

∣

= 2 · 7 − 1 ·
(

− 4
)

= 18,

det B =

∣

∣

∣

∣

6 −3
5 −1

∣

∣

∣

∣

= 6 ·
(

− 1
)

−
(

− 3
)

· 5 = 9.

Mmm. So far so good. But then, independently of those, why don’t we calculate
AB

(

not the determinant yet, just A times B
)

:

AB =

[

2 1
−4 7

] [

6 −3
5 −1

]

=

[

2 · 6 + 1 · 5 2 ·
(

− 3
)

+ 1 ·
(

− 1
)

(

− 4
)

· 6 + 7 · 5
(

− 4
)

·
(

− 3
)

+ 7 ·
(

− 1
)

]

=

[

17 −7
11 5

]

.

Do you know where I am going? Yes. I want you to now calculate the determinant of

this last one

[

17 −7
11 5

]

, and see what happens. Voilà:

det
(

AB
)

= 17 · 5 −
(

− 7
)

· 11 = 162.

To summarize,

det A = 18, det B = 9, det
(

AB
)

= 162.

Realize 18 · 9 = 162.
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Example 2 (that is in sync with Product Formula). Let

A =

[

1 3
2 −1

]

and B =

[

2 1
4 5

]

.

(

Once again these matrices are random choices.
)

Agree

det A =

∣

∣

∣

∣

1 3
2 −1

∣

∣

∣

∣

= 1 ·
(

− 1
)

− 3 · 2 = −7,

det B =

∣

∣

∣

∣

2 1
4 5

∣

∣

∣

∣

= 2 · 5 − 1 · 4 = 6.

Independently of these,

AB =

[

1 3
2 −1

] [

2 1
4 5

]

=

[

1 · 2 + 3 · 4 1 · 1 + 3 · 5

2 · 2 +
(

− 1
)

· 4 2 · 1 +
(

− 1
)

· 5

]

=

[

14 16
0 −3

]

,

so

det
(

AB
)

= 14 ·
(

− 3
)

− 16 · 0 = −42.

To summarize:

det A = −7, det B = 6, det
(

AB
)

= −42.

Realize
(

−7
)

· 6 = −42.
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• So in both examples
(

Example 1 and Example 2
)

,

det
(

AB
)

=
(

detA
)(

detB
)

.

Question. Is that a coincidence?

(

You knew this question coming, right?
)

Answer. No, that is not a coincidence. The same is actually true for any

A =

[

a b

c d

]

and B =

[

p q

r s

]

.

(

You knew this answer coming too.
)

• Below is the first highlight of the day:

Formula 1 ( Product Formula for 222××× 222).

For A =

[

a b

c d

]

and B =

[

p q

r s

]

, we have

det
(

AB
)

=
(

detA
)(

detB
)

.

Okay, that was just that. So, let’s move on. What do you think will be next? Or
what?
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— Wait.. We are not done yet. We still need to prove Product Formula. Don’t

say “Oh, no. Again?” If you say we have already tested the validity of this formula
in two different examples, so you can trust that the same formula must always be
true, so you want to waste no time and get to the next topic. If you say so, I say
“sorry, but you are mistaken”.

True, the above two examples are both in sync with what the formula says. But
that might be by sheer accident. Even if you try out with one hundred, one thousand,
or one million, examples, all of which are in sync with what Product Formula says,
that’s not enough. Because there are infinitely many matrices A and B. So, you

really have to prove the statement using a general pair of matrices A and B :

A =

[

a b

c d

]

and B =

[

p q

r s

]

,

where a, b, c, d, p, q, r and s are arbitrary.

• All right, I hope I have convinced you. How should you go about proving it,
though? Let’s dissect. First agree

detA =

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

= ad − bc, detB =

∣

∣

∣

∣

p q

r s

∣

∣

∣

∣

= ps − qr.

Meanwhile, agree

AB =

[

ap + br aq + bs

cp + dr cq + ds

]

.

So

det
(

AB
)

=

∣

∣

∣

∣

ap + br aq + bs

cp + dr cq + ds

∣

∣

∣

∣

=
(

ap + br
)(

cq + ds
)

−
(

aq + bs
)(

cp + dr
)

.

Bases on these, let’s agree that the content of Product Formula
(

Formula 1
)

in the
previous page is a mere paraphrase of the following:
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Formula 1′′′ ( Product Formula, spelt-out version, 222××× 222).

(

ap + br
)(

cq + ds
)

−
(

aq + bs
)(

cp + dr
)

(∗)

=
(

ad − bc
)(

ps − qr
)

.

This is what I call “the spelt-out version” of Formula 1, meaning:

“ In order to prove Formula 1, it suffices to prove (∗)
(

Formula 1′
)

. ”

Good news: Verifying (∗) is straightforward
(

mundane exercise
)

:

Proof of (∗∗∗) (Formula 1′′′).

The left-hand side of (∗)

=
(

ap + br
)(

cq + ds
)

−
(

aq + bs
)(

cp + dr
)

=
(

apcq + apds + brcq + brds
)

−
(

aqcp + aqdr + bscp + bsdr
)

=
(

acpq + adps + bcqr + bdrs
)

−
(

acpq + adqr + bcps + bdrs
)

= adps + bcqr − adqr − bcps.

The right-hand side of (∗)

=
(

ad − bc
)(

ps − qr
)

= adps − adqr − bcps + bcqr

= adps + bcqr − adqr − bcps.

The above calculations show that the two sides of (∗) are equal. �
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Exercise 1. For A =

[

4 −2
3 −3

]

, and B =

[

6 5
8 3

]

, calculate

(1) detA, (2) detB, (3)
(

detA
)(

detB
)

based on (1–2),

(4) AB, and (5) det
(

AB
)

based on (4).

Confirm that the answer for (3) and the answer for (5) coincide.

• We have just proved Product Formula
(

Formula 1 on page 4
)

via Formula 1′
(

on

page 6
)

. You would sense that this is one of those “ad nauseum”, something you are
compelled to memorize. In fact, the level of sophistication is subpar, at best. The
truth is, although this formula itself appears to be rather rudimentary, it has larger
size counterparts, and those will not be as rudimentary. You may not believe me.
So, let’s just take a quick peek at how each of the 3 × 3 and the 4 × 4 counterparts
looks like

(

below
)

. How do you see them? Do they strike you as trivial?

Product Formula (Spelt-out version, 333××× 333).

(

a1p1 + a2p2 + a3p3

)(

b1q1 + b2q2 + b3q3

)(

c1r1 + c2r2 + c3r3

)

+
(

a1q1 + a2q2 + a3q3

)(

b1r1 + b2r2 + b3r3

)(

c1p1 + c2p2 + c3p3

)

+
(

a1r1 + a2r2 + a3r3

)(

b1p1 + b2p2 + b3p3

)(

c1q1 + c2q2 + c3q3

)

−
(

a1r1 + a2r2 + a3r3

)(

b1q1 + b2q2 + b3q3

)(

c1p1 + c2p2 + c3p3

)

−
(

a1p1 + a2p2 + a3p3

)(

b1r1 + b2r2 + b3r3

)(

c1q1 + c2q2 + c3q3

)

−
(

a1q1 + a2q2 + a3q3

)(

b1p1 + b2p2 + b3p3

)(

c1r1 + c2r2 + c3r3

)

=
(

a1b2c3 + a2b3c1 + a3b1c2 − a3b2c1 − a1b3c2 − a2b1c3

)

·
(

p1q2r3 + p2q3r1 + p3q1r2 − p3q2r1 − p1q3r2 − p2q1r3

)

.
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Product Formula (Spelt-out version, 444××× 444).

(a1p1+a2q1+a3r1+a4s1)(b1p2+b2q2+b3r2+b4s2)(c1p3+c2q3+c3r3+c4s3)(d1p4+d2q4+d3r4+d4s4)

+(a1p1+a2q1+a3r1+a4s1)(b1p3+b2q3+b3r3+b4s3)(c1p4+c2q4+c3r4+c4s4)(d1p2+d2q2+d3r2+d4s2)

+(a1p1+a2q1+a3r1+a4s1)(b1p4+b2q4+b3r4+b4s4)(c1p2+c2q2+c3r2+c4s2)(d1p3+d2q3+d3r3+d4s3)

+(a1p2+a2q2+a3r2+a4s2)(b1p1+b2q1+b3r1+b4s1)(c1p4+c2q4+c3r4+c4s4)(d1p3+d2q3+d3r3+d4s3)

+(a1p2+a2q2+a3r2+a4s2)(b1p4+b2q4+b3r4+b4s4)(c1p3+c2q3+c3r3+c4s3)(d1p1+d2q1+d3r1+d4s1)

+(a1p2+a2q2+a3r2+a4s2)(b1p3+b2q3+b3r3+b4s3)(c1p1+c2q1+c3r1+c4s1)(d1p4+d2q4+d3r4+d4s4)

+(a1p3+a2q3+a3r3+a4s3)(b1p1+b2q1+b3r1+b4s1)(c1p2+c2q2+c3r2+c4s2)(d1p4+d2q4+d3r4+d4s4)

+(a1p3+a2q3+a3r3+a4s3)(b1p2+b2q2+b3r2+b4s2)(c1p4+c2q4+c3r4+c4s4)(d1p1+d2q1+d3r1+d4s1)

+(a1p3+a2q3+a3r3+a4s3)(b1p4+b2q4+b3r4+b4s4)(c1p1+c2q1+c3r1+c4s1)(d1p2+d2q2+d3r2+d4s2)

+(a1p4+a2q4+a3r4+a4s4)(b1p1+b2q1+b3r1+b4s1)(c1p3+c2q3+c3r3+c4s3)(d1p2+d2q2+d3r2+d4s2)

+(a1p4+a2q4+a3r4+a4s4)(b1p3+b2q3+b3r3+b4s3)(c1p2+c2q2+c3r2+c4s2)(d1p1+d2q1+d3r1+d4s1)

+(a1p4+a2q4+a3r4+a4s4)(b1p2+b2q2+b3r2+b4s2)(c1p1+c2q1+c3r1+c4s1)(d1p3+d2q3+d3r3+d4s3)

−(a1p1+a2q1+a3r1+a4s1)(b1p2+b2q2+b3r2+b4s2)(c1p4+c2q4+c3r4+c4s4)(d1p3+d2q3+d3r3+d4s3)

−(a1p1+a2q1+a3r1+a4s1)(b1p4+b2q4+b3r4+b4s4)(c1p3+c2q3+c3r3+c4s3)(d1p2+d2q2+d3r2+d4s2)

−(a1p1+a2q1+a3r1+a4s1)(b1p3+b2q3+b3r3+b4s3)(c1p2+c2q2+c3r2+c4s2)(d1p4+d2q4+d3r4+d4s4)

−(a1p2+a2q2+a3r2+a4s2)(b1p1+b2q1+b3r1+b4s1)(c1p3+c2q3+c3r3+c4s3)(d1p4+d2q4+d3r4+d4s4)

−(a1p2+a2q2+a3r2+a4s2)(b1p3+b2q3+b3r3+b4s3)(c1p4+c2q4+c3r4+c4s4)(d1p1+d2q1+d3r1+d4s1)

−(a1p2+a2q2+a3r2+a4s2)(b1p4+b2q4+b3r4+b4s4)(c1p1+c2q1+c3r1+c4s1)(d1p3+d2q3+d3r3+d4s3)

−(a1p3+a2q3+a3r3+a4s3)(b1p1+b2q1+b3r1+b4s1)(c1p4+c2q4+c3r4+c4s4)(d1p2+d2q2+d3r2+d4s2)

−(a1p3+a2q3+a3r3+a4s3)(b1p4+b2q4+b3r4+b4s4)(c1p2+c2q2+c3r2+c4s2)(d1p1+d2q1+d3r1+d4s1)

−(a1p3+a2q3+a3r3+a4s3)(b1p2+b2q2+b3r2+b4s2)(c1p1+c2q1+c3r1+c4s1)(d1p4+d2q4+d3r4+d4s4)

−(a1p4+a2q4+a3r4+a4s4)(b1p1+b2q1+b3r1+b4s1)(c1p2+c2q2+c3r2+c4s2)(d1p3+d2q3+d3r3+d4s3)

−(a1p4+a2q4+a3r4+a4s4)(b1p2+b2q2+b3r2+b4s2)(c1p3+c2q3+c3r3+c4s3)(d1p1+d2q1+d3r1+d4s1)

−(a1p4+a2q4+a3r4+a4s4)(b1p3+b2q3+b3r3+b4s3)(c1p1+c2q1+c3r1+c4s1)(d1p2+d2q2+d3r2+d4s2)

=
(

a1b2c3d4+a1b3c4d2+a1b4c2d3+a2b1c4d3+a2b4c3d1+a2b3c1d4

+a3b1c2d4+a3b2c4d1+a3b4c1d2+a4b1c3d2+a4b3c2d1+a4b2c1d3

−a1b2c4d3−a1b4c3d2−a1b3c2d4−a2b1c3d4−a2b3c4d1−a2b4c1d3

−a3b1c4d2−a3b4c2d1−a3b2c1d4−a4b1c2d3−a4b2c3d1−a4b3c1d2

)

·

(

p1q2r3s4+p1q3r4s2+p1q4r2s3+p2q1r4s3+p2q4r3s1+p2q3r1s4

+p3q1r2s4+p3q2r4s1+p3q4r1s2+p4q1r3s2+p4q3r2s1+p4q2r1s3

−p1q2r4s3−p1q4r3s2−p1q3r2s4−p2q1r3s4−p2q3r4s1−p2q4r1s3

−p3q1r4s2−p3q4r2s1y−p3q2r1s4−p4q1r2s3−p4q2r3s1−p4q3r1s2

)

.
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Now, suppose I asked you to prove these, you probably cannot think of any

immediate way to go about. If you say your computer can handle it, I say this: The
above is only up to 4 × 4. The same formula for 5 × 5, 6 × 6, 7 × 7, ··· exist. The
expansion of the left-hand side, and the right-hand side, of the n × n counterpart
formula, before cancellations, involve the following number of terms:

nn · n!, and
(

n!
)2

,

respectively. These numbers for n = 3, 4, 5, 6, 7, 8 come out as

n = 3 =⇒ 162, 36.

n = 4 =⇒ 6144, 576.

n = 5 =⇒ 375000, 14400.

n = 6 =⇒ 33592320, 518400.

n = 7 =⇒ 4150656720, 25401600.

n = 8 =⇒ 676457349120, 1625702400.

· · ·· · ·· · ·

These are the numbers of terms your computer is supposed to deal with. These
numbers grow exponentially as n grows. As you can read off from the above table,
already for n = 8 the number nn · n! is a 12-digit number

(

an order of trillion
)

.
For n = 100 the corresponding number nn · n! is a 358-digit number. Sooner
or later it will go above your computer’s capability. Now, be that as it may, any
mathematical software you’ve heard of actually knows the Product Formula in any
size n. The next thing I say is important: That’s because the formula is known to

be true, by humans, because human mathematicians have logically proved it, in an

ex machina way. Then whoever came up with that software
(

or whoever is in charge

of updating that software
)

borrowed that knowledge and installed the formula on

the software. The computer itself does not have enough intelligence to generate that

proof of the formula. How to prove the formula, in an ex machina way, and things of

this nature, are what you are going to learn in this class: You are going to work on

things computers cannot replace. So far we haven’t even defined the determinants for

matrices larger than 3 × 3, or matrix multiplication for matrices larger than 2 × 2.
We need to do that first. Then how to prove Product Formula for n × n is a whole
different story altogether. That’s coming up. For the rest of today we switch gears.
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• [b] Associativity Law.

In matrix arithmetic, we often deal with the situation where three matrices are
involved. Suppose we have

A =

[

a b

c d

]

, B =

[

p q

r s

]

, C =

[

x y

z w

]

.

We are sometimes compelled to form their product ABC by necessity. We have
already encountered such situation in “Review of Lectures – V”; page 10 — what
we’ve seen there is more like A−1AB, but this falls into the template of “three
matrices being multiplied together”. So let’s talk about ABC, which is more general.

As innocuous as it seems, if you stop and think twice, we have to worry about the
following: There are two obvious ways to calculate it:

(i) Calculate ABC as
(

AB
)

C. (ii) Calculate ABC as A
(

BC
)

.

A natural question here is, whether these two match. This is something we need to
analyze. The answer is, that is indeed the case. In fact, here is the proof:

Proof of
(

AAABBB
)

CCC === AAA
(

BBBCCC
)

.

(

AB
)

C =

([

a b

c d

] [

p q

r s

]) [

x y

z w

]

=

[

ap + br aq + bs

cp + dr cq + ds

] [

x y

z w

]

=

[

apx + brx + aqz + bsz apy + bry + aqw + bsw

cpx + drx + cqz + dsz cpy + dry + cqw + dsw

]

,

and

A
(

BC
)

=

[

a b

c d

] ([

p q

r s

] [

x y

z w

])

=

[

a b

c d

] [

px + qz py + qw

rx + sz ry + sw

]

=

[

apx + aqz + brx + bsz apy + aqw + bry + bsw

cpx + cqz + drx + dsz cpy + cqw + dry + dsw

]

.

If you look at these, you see that
(

AB
)

C and A
(

BC
)

indeed coincide. �
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• To highlight the result:

Formula 2 (Associativity Law). For

A =

[

a b

c d

]

, B =

[

p q

r s

]

, C =

[

x y

z w

]

,

we have

(

AB
)

C = A
(

BC
)

.

• Proof of Formula 2 is already given in the previous page, so we don’t need to
repeat that. Now, what does Formula 2 above entail? Yes, when it comes to ABC,
we don’t ever have to worry about placing parenthesis either over the AB part, or
over the BC part. This is just like

2 · 3 · 5.

You immediately say 30 is the answer. I bet you probably did it this way: First
2 · 3 = 6, and then 6 · 5 = 30. But like I said “probably”. Indeed, some of you
might have done it the following way: First 3 ·5 = 15, and then 2 ·15 = 30. But
we all know that, either way you’ll get the same answer. Below is the mathematically
precise way to compile what I just said

(

pay attention to the parentheses
)

:

(

2 · 3
)

· 5 = 2 ·
(

3 · 5
)

.

More generally, if a, b and c are numbers
(

real numbers, to be precise
)

, then
(

a · b
)

· c = a ·
(

b · c
)

.

So, you would say Formula 2 above merely says that the same is true for matrices.
Well, that’s true. So then you might say Formula 2 is not worthy to isolate because
that’s no surprise. Well, I have at least two ways to retort. One is the following
(

this is actually the second time you hear this
)

: When you generalize something
from numbers to matrices, you are going to lose some of the properties. In general
AB 6= BA for matrices A and B. Needless to say, ab = ba for numbers a and
b. So you need to keep track of both (a) those properties that are carried over from

numbers to matrices, and (b) those that aren’t.
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Another: there is actually a number system wherein

(

a · b
)

· c 6= a ·
(

b · c
)

.

It’s just that we haven’t seen it yet in this class. Numbers in such number system
are called octonion numbers

(

octonions
)

, or sometimes called Cayley numbers .
But you don’t really have to know what that is. In order to understand octonion
numbers you need to understand quaternion numbers

(

quaternions
)

first, indeed,
the former is a generalization of the latter. If you are interested, we can chat about
it on the sideline. Not here, not right now.

Definition (triple product). Keeping Formula 2 in mind, we define

ABC

as either A
(

BC
)

, or equivalently,
(

AB
)

C.

• Multiplications of four or more matrices. Next, for

A =

[

a1 b1
c1 d1

]

, B =

[

a2 b2
c2 d2

]

, C =

[

a3 b3
c3 d3

]

, D =

[

a4 b4
c4 d4

]

,

there are apparently five different ways to calculate ABCD:

(i) Calculate ABCD as
(

(

AB
)

C
)

D.

(ii) Calculate ABCD as
(

A
(

BC
)

)

D.

(iii) Calculate ABCD as A
(

(

BC
)

D
)

.

(iv) Calculate ABCD as A
(

B
(

CD
)

)

.

(v) Calculate ABCD as
(

AB
)(

CD
)

.

Do you see that all these five (i–v) coincide?
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Exercise 2. Explain why (i–v) all coincide.

[[[

Hint for Exercise 2
]]]

: First explain why (i) and (ii) are the same. For that

matter, it suffices to say (i) and (ii) are both
(

ABC
)

D. Next, explain why (iii)

and (iv) are the same
(

same logic
)

. Next, explain why (i) and (v) are the same
(

set

AB = E
)

. Finally, explain why (iv) and (v) are the same
(

set CD = F
)

.

It is worth highlighting the content of Exercise 2
(

below
)

:

Corollary. Let A, B, C, D be as above. Then

(

(

AB
)

C
)

D =
(

A
(

BC
)

)

D = A
(

(

BC
)

D
)

= A
(

B
(

CD
)

)

=
(

AB
)(

CD
)

.

Definition. Keeping Corollary above in mind, we define ABCD as the five
mutually equal matrices:

ABCD =
(

(

AB
)

C
)

D =
(

A
(

BC
)

)

D = A
(

(

BC
)

D
)

= A
(

B
(

CD
)

)

=
(

AB
)(

CD
)

.

• Consecutive product. We may extend the above idea, and may define a

consecutive product for an arbitrary number of matrices.

A1 =

[

a1 b1
c1 d1

]

, A2 =

[

a2 b2
c2 d2

]

, A3 =

[

a3 b3
c3 d3

]

, ··· , Ak =

[

ak bk
ck dk

]

.

Define the product A1 A2 A3 · · ·Ak−1Ak as

A1 A2 A3 · · ·Ak−1Ak =

(

(

(

··
(

(A1 A2)A3

)

· · ·
)

Ak−2

)

Ak−1

)

Ak

= A1

(

A2

(

A3

(

· · ·
(

Ak−2 (Ak−1 Ak)
)

··
)

)

)

.
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Exercise 3. Let

A =

[

1 0
1 1

]

, B =

[

1 1
1 0

]

, C =

[

1 1
0 1

]

, D =

[

0 1
1 1

]

.

Calculate

(1) AB. (2) BC. (3) CD.

(4) ABC. (5) BCD. (6) ABCD.

• Powers. In the product

A1A2A3 ··· Ak,

suppose A1, A2, A3, · · · , Ak are mutually identical, call it A. Then we might
as well just write it as Ak. In other words:

Definition. For A =

[

a b

c d

]

, consider

A1 = A,

A2 = AA,

A3 = AAA,

A4 = AAAA,

A5 = AAAAA,

···

• So

Ak = A A A ··· A .
x yk
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Example 3. Remember that I =

[

1 0
0 1

]

satisfies

IA = A

no matter what A =

[

a b

c d

]

is. So, nothing stops us from setting A = I,

and that way we get

I I = I.

In other words,

I2 = I.

From this we also get

I I2 = I I

= I.

In other words, I3 = I. From this we also get

I I3 = I I

= I.

In other words, I4 = I. And this goes on and on.

So, in short, for the identity matrix I, we have

Ik = I, for k = 1, 2, 3, · · · .

Stated in other words,

[

1 0
0 1

]k

=

[

1 0
0 1

]

, for k = 1, 2, 3, · · · .
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• One last topic to wrap up today’s class. In the matrix multiplication formation,
suppose some constant is being multiplied to each of the matrices, like

(

tA
)(

uB
)

.

Then we can pull those constants to the left. Below is the precise statement:

Formula 3. Let t and u be scalars. Let

A =

[

a b

c d

]

, B =

[

p q

r s

]

.

Then

(

tA
)(

uB
)

=
(

tu
)

(

AB
)

.

Corollary. Let A =

[

a b

c d

]

, and t a scalar. Then for k = 1, 2, 3, ···,

(

t A
)k

= tk Ak.

Example 4. In Corollary above, if you set A = I, then

A =

[

t 0
0 t

]

=⇒ Ak =

[

tk 0
0 tk

]

.

The following is a generalization of Example 4:

Example 5. Let A =

[

a 0
0 b

]

. Then

(∗)k Ak =

[

ak 0
0 bk

]

.

Exercise 4. Prove Example 5, via mathematical induction. Practically, do (i)
and (ii) below:

(i) Prove that (∗)1
(

= (∗)k for k = 1
)

is true.

(ii) Assume that (∗)k is true, and with that assumption prove that (∗)k+1 is true.
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Exercise 5. For k = 1, 2, 3, ···, find

(1)

[

2 0
0 5

]k

. (2)

[

1 a

0 1

]k

. (3)

[

2 a

0 2

]k

.

[[[

Hint for Exercise 5 (2)
]]]

: First verify

[

1 a

0 1

] [

1 b

0 1

]

=

[

1 a+b

0 1

]

.

Use this fact wisely.

Exercise 6. (1) True or False.
(

AB
)2

= A2B2.

(2) Suppose AB = BA. True or False.
(

AB
)2

= A2B2.
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