
Math 290 ELEMENTARY LINEAR ALGEBRA

REVIEW OF LECTURES – V

September 6 (Wed), 2017

Instructor: Yasuyuki Kachi

Line #: 25751.

§5. Matrix arithmetic — III. Identity matrix.

• Today we start with one specific matrix that plays an important role:

Definition.

[

1 0
0 1

]

is called the
(

2 × 2
)

identity matrix . We reserve the

letter “ I ” for this matrix:

I =

[

1 0
0 1

]

.

— Okay, that was out of the blue. What’s so special about it? Why does this matrix
[

1 0
0 1

]

deserve a special treatment
(

a designated name, and a letter
)

? The next

example explains it:

Example 1. Let

A =

[

2 4
7 −3

]

.

(

I just randomly created this A.
)

Not for nothing, let’s calculate IA
(

matrix

multiplication, from our last lecture
)

: Here we go:

I A =

[

1 0
0 1

] [

2 4
7 −3

]

=

[

1 · 2 + 0 · 7 1 · 4 + 0 ·
(

− 3
)

0 · 2 + 1 · 7 0 · 4 + 1 ·
(

− 3
)

]

=

[

2 4

7 −3

]

.
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All right. What do you notice? Isn’t the final outcome just A? So,

IA = A,

for this particular A: A =

[

2 4
7 −3

]

. Fine. But how about AI? Remember,

for two matrices A and B, AB and BA may or may not coincide, depending on

A and B
(

see “Review of Lectures – IV”, page 11
)

. So we shouldn’t prematurely

conclude that AI equals A, just from knowing that IA equals A. Not yet. I’m still

not saying that it is one way or the other. So, let’s check:

AI =

[

2 4
7 −3

] [

1 0
0 1

]

=

[

2 · 1 + 4 · 0 2 · 0 + 4 · 1

7 ·1 +
(

− 3
)

·0 7 ·0 +
(

− 3
)

·1

]

=

[

2 4

7 −3

]

.

Okay. The outcome is indeed A. — We kind of expected it, though.

So,

AI = A

for the same A: A =

[

2 4
7 −3

]

. In sum, we have verified:

A =

[

2 4
7 −3

]

=⇒ IA = A, AI = A.

• Now, from this you naturally suspect that the same is true not just for one A,

but for all A, as long as A is a 2× 2 matrix. If you want to know the answer right

way, here it is: ‘Yes indeed’. How ever innocuous, that fact is worthy to highlight:

Fact 1. For I =

[

1 0
0 1

]

and A =

[

a b

c d

]

, we have

IA = A, and AI = A.
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• We need to give a proof of this statement. You might say we have already tested

the validity of this statement using one concrete A: A =

[

2 4
7 −3

]

, and that’s

enough
(

to claim that the statement is valid
)

. If you say so, I say “well, not really”.

The statement might be true for one A by sheer coincidence. The same statement

might not be true in general. So we need to prove the statement using a general A,

that is,

A =

[

a b

c d

]

,

where a, b, c and d are arbitrary. So, here we go:

Proof. Let’s do IA and AI for

I =

[

1 0
0 1

]

, and A =

[

a b

c d

]

.

Here we go:

I A =

[

1 0
0 1

] [

a b

c d

]

=

[

1 · a + 0 · c 1 · b + 0 · d

0 · a + 1 · c 0 · b + 1 · d

]

=

[

a b

c d

]

= A,

AI =

[

a b

c d

] [

1 0
0 1

]

=

[

a · 1 + b · 0 a · 0 + b · 1

c · 1 + d · 0 c · 0 + d · 1

]

=

[

a b

c d

]

= A. �
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• Since this is important, let me highlight it one more time:

Fact 1. For I =

[

1 0
0 1

]

and A =

[

a b

c d

]

, we have

IA = A, and AI = A.

A good analogy:

“In the context of matrix multiplications, the identity matrix ‘I’

serves the same role as ‘1’
(

the number
)

does in the usual number

multiplications. We always have

(∗) 1 a = a, and a 1 = a

for any number a.
(

Right?
)

In the same token,

(#) I A = A, and AI = A

for any matrix A. These two, (∗) and (#), are entirely parallel.”

• Now, let me quiz you.

Quiz. Let A =

[

a b

c d

]

, and suppose A−1 exists.

AA−1 =? A−1A =?

— If you say both equal I, I’d say you are very smart: You are indeed correct.
Doesn’t that require a proof? Yes it does. Here it is:
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Proof of AAAAAA−1−1−1 === III; AAA−1−1−1AAA === III. Recall that, for A =

[

a b

c d

]

,

A−1 =
1

ad − bc
adjA, where

adjA =

[

d −b

−c a

]

.

So it makes sense to first calculate A
(

adj A
)

and
(

adjA
)

A each:

A
(

adjA
)

=

[

a b

c d

] [

d −b

−c a

]

=

[

ad + b
(

−c
)

a
(

−b
)

+ ba

cd + d
(

−c
)

c
(

−b
)

+ da

]

=

[

ad − bc 0

0 ad − bc

]

=
(

ad − bc
)

[

1 0

0 1

]

=
(

ad − bc
)

I,

and

(

adj A
)

A =

[

d −b

−c a

] [

a b

c d

]

=

[

da +
(

−b
)

c db +
(

−b
)

d
(

−c
)

a + ac
(

−c
)

b + ad

]

=

[

ad − bc 0

0 ad − bc

]

=
(

ad − bc
)

[

1 0

0 1

]

=
(

ad − bc
)

I.
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In short,

A
(

adj A
)

=
(

ad − bc
)

I, and
(

adjA
)

A =
(

ad − bc
)

I.

Now, suppose ad− bc 6= 0. Then you can divide the two sides of each of the above
two equalities:

A

(

1

ad − bc
adjA

)

= I, and

(

1

ad − bc
adjA

)

A = I.

x y x y

‖ ‖

A−1 A−1

So, we indeed arrive at

AA−1 = I, and A−1A = I.

Let me highlight the result:

Fact 2. For A =

[

a b

c d

]

, suppose

detA 6= 0, namely, ad − bc 6= 0.

Then

AA−1 = I, and A−1A = I.

• All right. What does this entail? Yes:
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“We always have

(∗∗) a a−1 = 1, and a−1 a = 1

for any number a, provided a 6= 0.
(

Right?
)

In the same token,

(##) AA−1 = I, and A−1 A = I

for any matrix A, provided detA 6= 0. These two, (∗∗) and

(##), are entirely parallel.”

• Now, so far things are relatively low key. But as is always true in math, things
can suddenly take a dramatic turn. If you have a good mathematical insight, you
already should have “the next level question” in mind, which is as follows:

• The next level question. Consider two matrices

A =

[

a b

c d

]

and B =

[

p q

r s

]

.

Suppose their product AB equals I: AB = I. Then is it true

(1) BA = I?

(2) B = A−1, and A = B−1?

— This question might at first sound a minor tweak of the last questions
(

whose

answers are summarized in ‘Fact 1’ on page 4, and ‘Fact 2’ on page 6
)

. But the
truth is, this time around the level of difficulty has been raised by a few notches. As
always, let me first give the answers, and then dissect. The answers are

◦ ‘Yes’ for part (1).

◦ ‘Yes’ for part (2).
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— All right. But why is that the case? Also, what do I really mean by saying
that this one tops ‘Fact 1’

(

page 4
)

and ‘Fact 2’
(

page 6
)

, in terms of the level of
difficulty? You might just echo the voices of Student A and Student B below:

⋆ Student A.

“We already know AA−1 = I. That means AX = I, regarded

as an equation with X unknown, is solved as X = A−1. Likewise,

we already know B−1B = I. That means Y B = I, once again

regarded as an equation with Y unknown, is solved as Y = B−1.

That answers this question entirely. So, what’s really in there?”

— Wow. That sure sounds a very intelligent answer. Now, Student B:

⋆ Student B.

“If two numbers a and b satisfy ab = 1 then, needless to say ,

a and b are reciprocals of each other: b = a−1 and a = b−1.

So, in the same token, if you replace a and b with matrices, the same

must be true.”

— That sounds an intelligent answer too. Here are my comments:

“You two are actually not too off-the-mark. Congrats, you both have

earned some extra credit for taking the courage to share your thoughts

on this issue. Now, I still have to critique you, as follows:”

⋆ My retort to Student A:

“You are half-right. True, AA−1 = I ensures that AX = I has

‘at least one’ solution, which is, X = A−1. But how are you so sure

there is no other solution for AX = I ? Another point to quibble:

Your logic indeed works as long as A−1 exists. How do you ensure

that A−1 exists, from the given condition AB = I? Justification

for that is lacking.”
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⋆ My retort to Student B:

“You too are basically right, but you still need to justify that you

can extrapolate your argument for matrices without a glitch. When

you generalize something that holds true for numbers to something

other than numbers
(

such as matrices
)

, the odds are that you are

going to lose some of the properties that the numbers possessed. For

example, I have already stressed that, in general, AB and BA are

not equal for matrices A and B. So, nothing is really certain.”

Wow, that was harsh. But like I said, the two students are still not too off-the-
mark. Indeed, as Student B suggests, we must shoot for an extrapolation argument.
Follow the next paragraph carefully:

Outline of the extrapolation argument.

“First, ab = 1 forces a to be non-zero. Thus a−1 exists. Then

multiply a−1 to the two sides of ab = 1: Then you immediately

obtain b = a−1. Similarly, by multiplying b−1 instead of a−1 you will

obtain a = b−1. The very same logic can be employed for matrices

to pull the same conclusion for matrices, save that there are a

couple of points which prove to be subtle
(

#1 and #2 below
)

.”

Point of subtlety # 1: The extrapolation of the part

◦ “ ab = 1 forces a to be non-zero”.

The right extrapolation of this statement for matrices is

◦ “ AB = I forces A to have a non-zero determinant.”

This latter statement is true. However, it is not that trivial. We need

to provide a proof of it.
(

Here we go again!
)

For that matter, we in

turn need to rely on a so-called “Product Formula”. So, naturally,

“Product Formula” is the next agenda on our check-list.
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Point of subtlety # 2: The extrapolation of the part

◦ “multiply a−1 to the two sides of ab = 1 to get b = a−1.”

The right extrapolation of this statement for matrices is

◦ “multiply A−1 to the two sides of AB = I to get B = A−1.”

A couple of delicate points here: First you need to say you multiply

A−1 from the left, as in

A−1

(

AB
)

= A−1I.

Second, you want to say A−1

(

AB
)

is reduced to B. However,

technically speaking, in order to be able to safely claim that, you

need to know in advance

A−1

(

AB
)

=
(

A−1A
)

B.

This turns out to be true, indeed, more generally,

A
(

BC
)

=
(

AB
)

C

holds true for three matrices A, B and C. Now, this last cited fact is

something that requires a proof.
(

Here we go again!
)

This property

A
(

BC
)

=
(

AB
)

C is called the “Associativity Law”. That’s in our

next agenda too.

— So, in sum, we need to cover

◦ Product Formula, and ◦ Associativity Law.

These are coming up.
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