Math 290 ELEMENTARY LINEAR ALGEBRA
 REVIEW OF LECTURES - IV

August 30 (Wed), 2017

Instructor: Yasuyuki Kachi

Line \#: 25751.

> §4. Matrix arithmetic - II. Multiplications.

- With the knowledge you already have, you can solve a system of linear equations, of 2×2 type.

Example 1. Let's solve

$$
\left\{\begin{aligned}
2 x-y & =3 \\
6 x+7 y & =-5
\end{aligned}\right.
$$

using the matrix trick. Here we go.

Step 1. Rewrite the system as

$$
\underbrace{\left[\begin{array}{cc}
2 & -1 \\
6 & 7
\end{array}\right]}_{\|} \underbrace{\left[\begin{array}{l}
x \\
y
\end{array}\right]}_{\|}=\underbrace{\left[\begin{array}{c}
3 \\
-5
\end{array}\right]}_{\|}
$$

So the equation is of the form $\quad A x=b$.

Remember the golden rule:

Step 2. Find A^{-1}, as follows:

Step 2a. First calculate the determinant of $A=\left[\begin{array}{cc}2 & -1 \\ 6 & 7\end{array}\right]$:

$$
\begin{aligned}
\operatorname{det} A=\left|\begin{array}{cc}
2 & -1 \\
6 & 7
\end{array}\right| & =2 \cdot 7-(-1) \cdot 6 \\
& =20
\end{aligned}
$$

Step 2b. Next, form the adjoint of $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}2 & -1 \\ 6 & 7\end{array}\right]$:

$$
\operatorname{adj} A=\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]=\left[\begin{array}{cc}
7 & 1 \\
-6 & 2
\end{array}\right]
$$

Step 2c. Use the results of Step $2 \mathrm{a}-\mathrm{b}$ to construct A^{-1} :

$$
\begin{aligned}
A^{-1} & =\frac{1}{\operatorname{det} A} \operatorname{adj} A \\
& =\frac{1}{20}\left[\begin{array}{cc}
7 & 1 \\
-6 & 2
\end{array}\right] .
\end{aligned}
$$

Step 3 (Final step) (will have another look momentarily).
Use A^{-1} to find $A^{-1} \boldsymbol{b}$:

$$
\begin{aligned}
A^{-1} \boldsymbol{b} & =\frac{1}{20}\left[\begin{array}{cc}
7 & 1 \\
-6 & 2
\end{array}\right]\left[\begin{array}{c}
3 \\
-5
\end{array}\right] \\
& =\frac{1}{20}\left[\begin{array}{c}
7 \cdot 3+1 \cdot(-5) \\
(-6) \cdot 3+2 \cdot(-5)
\end{array}\right] \\
& =\frac{1}{20}\left[\begin{array}{c}
16 \\
-28
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{5} \\
-\frac{7}{5}
\end{array}\right]
\end{aligned}
$$

This is the answer \boldsymbol{x}. In sum:

$$
\left[\begin{array}{cc}
2 & -1 \\
6 & 7
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
3 \\
-5
\end{array}\right] \quad \underset{\text { solve }}{\Longrightarrow}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\boldsymbol{x}=A^{-1} \boldsymbol{b}=\left[\begin{array}{c}
\frac{4}{5} \\
-\frac{7}{5}
\end{array}\right] .
$$

- Below let me give an abridged version of the solution:

Problem (same as above). Solve

$$
\left\{\begin{array}{r}
2 x-y=3 \\
6 x+7 y=-5
\end{array}\right.
$$

Solution. Let

$$
A=\left[\begin{array}{cc}
2 & -1 \\
6 & 7
\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{c}
3 \\
-5
\end{array}\right]
$$

so the given system is $A \boldsymbol{x}=\boldsymbol{b}$. We may solve this as

$$
\begin{aligned}
& A^{-1} \quad b \\
& \text { || } \\
& \boldsymbol{x}=A^{-1} \boldsymbol{b}=\underbrace{\frac{1}{2 \cdot 7-(-1) \cdot 6}}_{\|} \underbrace{\left[\begin{array}{cc}
7 & 1 \\
-6 & 2
\end{array}\right]}_{\|} \begin{array}{|c}
{\left[\begin{array}{c}
3 \\
-5
\end{array}\right]}
\end{array} \\
& \frac{1}{\operatorname{det} A} \quad \operatorname{adj} A \\
& =\frac{1}{20}\left[\begin{array}{c}
7 \cdot 3+1 \cdot(-5) \\
(-6) \cdot 3+2 \cdot(-5)
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{5} \\
-\frac{7}{5}
\end{array}\right] .
\end{aligned}
$$

The above is a template. I want you to write up your solution this way.

- All that said, the last step warrants another look. We 'instinctively' converted the part

$$
\left[\begin{array}{cc}
7 & 1 \\
-6 & 2
\end{array}\right]\left[\begin{array}{c}
3 \\
-5
\end{array}\right]
$$

into

$$
\left[\begin{array}{c}
7 \cdot 3+1 \cdot(-5) \\
(-6) \cdot 3+2 \cdot(-5)
\end{array}\right] .
$$

And that's the correct step. Actually this conversion is something we already 'subconsciously' knew. Indeed, at the very beginning we saw

$$
\left\{\begin{align*}
2 x-y & =3 \tag{@}\\
6 x+7 y & =-5
\end{align*}\right.
$$

(the original problem), and we immediately rewrote it as

$$
\left[\begin{array}{cc}
2 & -1 \\
6 & 7
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
3 \\
-5
\end{array}\right]
$$

which means that we knew that $\left[\begin{array}{ccc}2 x+ & (-1) y \\ 6 x+ & 7 & y\end{array}\right] \quad(=$ the vector made out of the left-hand sides of the two equations in (@)) and $\left[\begin{array}{cc}2 & -1 \\ 6 & 7\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$ are one and the same. Stated in other words, we knew that the correct conversion of $\left[\begin{array}{cc}2 & -1 \\ 6 & 7\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$ is $\left[\begin{array}{c}2 x+(-1) y \\ 6 x+7 \\ 6 x\end{array}\right] . \quad$ Repeat:

$$
\left[\begin{array}{cc}
2 & -1 \\
6 & 7
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
2 x+(-1) y \\
6 x+7 \\
6 x
\end{array}\right]
$$

The following is in a similar vein:

$$
\left[\begin{array}{cc}
7 & 1 \\
-6 & 2
\end{array}\right]\left[\begin{array}{c}
3 \\
-5
\end{array}\right]=\left[\begin{array}{c}
7 \cdot 3+1 \cdot(-5) \\
(-6) \cdot 3+2 \cdot(-5)
\end{array}\right]
$$

- More generally:
$\xlongequal{\text { "The correct conversion of }}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}p \\ r\end{array}\right] \xlongequal{\text { is }}\left[\begin{array}{l}a p+b r \\ c p+d r\end{array}\right]$."

Like last time, we must officially declare it to be the rule that is going to be enforced throughout. So, here we go:

- Rule.

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
p \\
r
\end{array}\right]=\left[\begin{array}{l}
a p+b r \\
c p+d r
\end{array}\right]
$$

Paraphrase:

$$
\begin{aligned}
A= & {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{c}
p \\
r
\end{array}\right] } \\
& \Longrightarrow
\end{aligned} \quad A \boldsymbol{x}=\left[\begin{array}{c}
a p+b r \\
c p+d r
\end{array}\right] .
$$

- I'm sure you got this. But just in case, I want to offer the following breakdown:

Break-down. We are going to do

(i) To find \diamond, observe

$$
\left[\begin{array}{|cc|}
\hline a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
\underline{p} \\
r
\end{array}\right]=\left[\begin{array}{c}
a p+b r \\
\hline \hline \boldsymbol{Q}
\end{array}\right]
$$

(ii) Next, to find \&, observe

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
\vec{p} \\
r
\end{array}\right]=\left[\begin{array}{|c}
a p+b r \\
\hline \hline c p+d r \\
\hline
\end{array}\right]
$$

Example 2. For $A=\left[\begin{array}{ll}5 & -2 \\ 8 & -9\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{l}6 \\ 4\end{array}\right], \quad$ we have

$$
\begin{aligned}
A \boldsymbol{x} & =\left[\begin{array}{ll}
5 & -2 \\
8 & -9
\end{array}\right]\left[\begin{array}{l}
6 \\
4
\end{array}\right] \\
& =\left[\begin{array}{l}
5 \cdot 6+(-2) \cdot 4 \\
8 \cdot 6+(-9) \cdot 4
\end{array}\right]=\left[\begin{array}{l}
22 \\
12
\end{array}\right] .
\end{aligned}
$$

Exercise 1. Perform each of the following multiplications:
(1) $\left[\begin{array}{cc}3 & \frac{1}{2} \\ \frac{5}{2} & -1\end{array}\right]\left[\begin{array}{c}2 \\ -1\end{array}\right]$.
(2) $A x$, where $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], \quad x=\left[\begin{array}{l}p \\ q\end{array}\right]$.
(3) $\quad A \boldsymbol{x}, \quad$ where $\quad A=\left[\begin{array}{cc}1 & 2 \\ -6 & 8\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$.
(4) $A x, \quad$ where $\quad A=\left[\begin{array}{ll}3 & -1 \\ 4 & -1\end{array}\right], \quad x=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.

Exercise 2. Solve each of the folowing systems of equations using matrices:

$$
\left\{\begin{array} { r l }
{ 3 x + 6 y } & { = 4 , } \tag{1}\\
{ 7 x + y } & { = 1 . }
\end{array} \quad (2) \quad \left\{\begin{array}{rl}
\frac{1}{3} x+4 y & =4 \\
-\frac{2}{3} x+y & =\frac{4}{3}
\end{array}\right.\right.
$$

- Matrix multiplication.

Now let's forget about solving systems of equations. The second topic of the day is completely something else. Well, that's not entirely true - it is actually a tweak of what you've just seen. Instead of multiplying a matrix with a vector , like

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
p \\
r
\end{array}\right],
$$

how about multiplying a matrix with a matrix , like

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right] ?
$$

Sure. Here is the rule that we hereby officially declare to permanently enforce:

$$
\text { - Rule. } \quad\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]=\left[\begin{array}{ll}
a p+b r & a q+b s \\
c p+d r & c q+d s
\end{array}\right] \text {. }
$$

- Paraphrase:

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \quad B=\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right] \\
& \Longrightarrow \quad A B=\left[\begin{array}{ll}
a p+b r & a q+b s \\
c p+d r & c q+d s
\end{array}\right]
\end{aligned}
$$

Do you clearly see how it works? The following breakdown helps:

- Break-down: First and foremost, acknowledge the following:
A and B are both 2×2 matrices $\Longrightarrow A B$ is a 2×2 matrix.
In other words:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]=\left[\begin{array}{c}
\square \\
\hline \hline
\end{array}\right]
$$

(i) Let us find \diamond in

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]=\left[\begin{array}{ll}
\square & \square \\
\hline \square
\end{array}\right.
$$

Since \diamond is in the top-left, accordingly highlight the portion of A and B, like

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
p & q \\
r & q
\end{array}\right]=\left[\begin{array}{l}
\boxed{ } \\
\hline \hline \square
\end{array}\right] .
$$

is $\quad a p+b r$:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]=\left[\begin{array}{ll}
a p+b r & \square \\
\square & \\
\end{array}\right.
$$

(ii) Next, let us find Ω in

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]=\left[\begin{array}{c}
a p+b r \\
\hline \square
\end{array}\right]
$$

Since \odot is in the top-right, accordingly highlight the portion of A and B, like

$$
\left[\begin{array}{ll}
\hline a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
p & \begin{array}{l}
q \\
r
\end{array} \\
s
\end{array}\right]=\left[\begin{array}{cc}
a p+b r & \bigcirc \\
\hline \hline
\end{array}\right] .
$$

\bigcirc is $a q+b s$:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]=\left[\begin{array}{cc}
\square a p+b r \\
\hline \hline a q+b s \\
\hline \hline
\end{array}\right]
$$

(iii) Similarly, we can find \& in

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]=\left[\begin{array}{cc}
a p+b r \\
\hline \hline \boldsymbol{\&} & \left.\begin{array}{c}
a q+b s \\
\hline
\end{array}\right]
\end{array}\right.
$$

by highlighting

$$
\left[\begin{array}{cc}
a & b \\
\hline c & d
\end{array}\right]\left[\begin{array}{cc}
{\left[\begin{array}{c}
p \\
r
\end{array}\right.} & q \\
s
\end{array}\right]=\left[\begin{array}{cc}
a p+b r \\
\hline \hline \boldsymbol{\&} \\
\hline \hline
\end{array}\right]
$$

\& is $c p+d r$:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]=\left[\begin{array}{l}
a p+b r \\
\hline \hline c p+d r \\
\hline \hline a q+b s \\
\hline
\end{array}\right]
$$

(iv) Finally, we can find \boldsymbol{A} in

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]=\left[\begin{array}{|c|}
\hline a p+b r \\
\hline \hline c p+d r \\
\hline \hline \boldsymbol{\uparrow} \\
\hline
\end{array}\right]
$$

by highlighting

$$
\left[\begin{array}{cc}
a & b \\
\hline c & d
\end{array}\right]\left[\begin{array}{cc}
p & \begin{array}{l}
q \\
r
\end{array} \\
s
\end{array}\right]=\left[\begin{array}{|c|}
\hline a p+b r \\
\hline \hline c p+d r \\
\hline \hline \boldsymbol{\uparrow} \\
\hline
\end{array}\right]
$$

© is $c q+d s$:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]=\left[\begin{array}{c}
\left.\begin{array}{|c|}
\hline a p+b r \\
\hline \hline c p+d r \\
9
\end{array} \quad \begin{array}{c}
a q+b s \\
\hline \hline c q+d s \\
\hline
\end{array}\right] . . . ~ . ~ . ~
\end{array}\right.
$$

- In sum, calculating $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}p & q \\ r & s\end{array}\right] \quad$ takes four steps :

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]=\left[\begin{array}{cc}
\diamond \\
\hline \hline \boldsymbol{\infty} \\
\hline \hline \boldsymbol{\infty} \\
\hline
\end{array}\right]
$$

Those four steps : $\diamond, \odot, \boldsymbol{\&}$ and $\boldsymbol{\oplus}, \underline{\text { are performed independently. }}$

- Alternative perspective. Below is another way to look at it.

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]
$$

is like

which is basically

$$
A\left[\begin{array}{ll}
x & y
\end{array}\right]
$$

And this is going to be converted to

$$
\left[\begin{array}{ll}
A x & A y
\end{array}\right],
$$

where $A \boldsymbol{x}$ and $A \boldsymbol{y}$ are exactly as we defined earlier.

- Paraphrase of 'Rule' on page 7.

$$
A\left[\begin{array}{ll}
x & y
\end{array}\right]=\left[\begin{array}{ll}
A x & A y
\end{array}\right]
$$

Example 3. For $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right], \quad B=\left[\begin{array}{cc}2 & -1 \\ -1 & 8\end{array}\right], \quad$ we have

$$
\begin{aligned}
A B & =\left[\begin{array}{ll}
1 & 2 \\
4 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 8
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 \cdot 2+2 \cdot(-1) & 1 \cdot(-1)+2 \cdot 8 \\
4 \cdot 2+2 \cdot(-1) & 4 \cdot(-1)+2 \cdot 8
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 15 \\
6 & 12
\end{array}\right] \\
B A & =\left[\begin{array}{cc}
2 & -1 \\
-1 & 8
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
4 & 2
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 \cdot 1+(-1) \cdot 4 & 2 \cdot 2+(-1) \cdot 2 \\
(-1) \cdot 1+8 \cdot 4 & (-1) \cdot 2+8 \cdot 2
\end{array}\right] \\
& =\left[\begin{array}{cc}
-2 & 2 \\
31 & 14
\end{array}\right] .
\end{aligned}
$$

- Important (!) As this example shows, $A B$ and $B A$ are usually not equal.

Exercise 3. Perform each of the following multiplications:
(1) $\left[\begin{array}{cc}-2 & 1 \\ 0 & 3\end{array}\right]\left[\begin{array}{ll}2 & 1 \\ 6 & 5\end{array}\right]$.
(2) $\left[\begin{array}{cc}1 & -2 \\ -4 & 8\end{array}\right]\left[\begin{array}{cc}3 & 7 \\ -1 & 0\end{array}\right]$.
(3) $\left[\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right]\left[\begin{array}{cc}\frac{3}{2} & 1 \\ 1 & \frac{-3}{2}\end{array}\right]$.
(4) $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
(5) $\quad A B, \quad$ where $\quad A=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right], \quad B=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]$,
(6) $A B, \quad$ where $\quad A=\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{-1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right], \quad B=\left[\begin{array}{cc}\frac{1}{2} & \frac{-\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right]$.
(7) $A B, \quad$ where $\quad A=B=\left[\begin{array}{cc}\frac{-1+\sqrt{5}}{4} & \frac{-\sqrt{10+2 \sqrt{5}}}{4} \\ \frac{\sqrt{10+2 \sqrt{5}}}{4} & \frac{-1+\sqrt{5}}{4}\end{array}\right]$.

