Math 290 ELEMENTARY LINEAR ALGEBRA REVIEW OF LECTURES – IV

August 30 (Wed), 2017

Instructor: Yasuyuki Kachi

Line #: 25751.

§4. MATRIX ARITHMETIC — II. MULTIPLICATIONS.

• With the knowledge you already have, you can solve a system of linear equations, of 2×2 type.

Example 1. Let's solve

$$\begin{cases} 2x - y = 3, \\ 6x + 7y = -5, \end{cases}$$

using the matrix trick. Here we go.

Step 1. Rewrite the system as

$$\begin{bmatrix} 2 & -1 \\ 6 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$$
$$\parallel \qquad \parallel \qquad \parallel \qquad \parallel$$
$$A \qquad x \qquad b$$

So the equation is of the form

$$A\boldsymbol{x} = \boldsymbol{b}.$$

Remember the golden rule:

$$A \boldsymbol{x} = \boldsymbol{b} \qquad \Longrightarrow_{\substack{ ext{can solve,} \\ ext{if det } A \neq 0}} \qquad \boldsymbol{x} = A^{-1} \boldsymbol{b}.$$

Step 2. Find A^{-1} , as follows:

Step 2a. First calculate the determinant of $A = \begin{bmatrix} 2 & -1 \\ 6 & 7 \end{bmatrix}$:

$$\det A = \begin{vmatrix} 2 & -1 \\ 6 & 7 \end{vmatrix} = 2 \cdot 7 - (-1) \cdot 6$$
$$= 20.$$

Step 2b. Next, form the adjoint of $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 6 & 7 \end{bmatrix}$:

adj
$$A = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} 7 & 1 \\ -6 & 2 \end{bmatrix}.$$

Step 2c. Use the results of Step 2a–b to construct A^{-1} :

$$A^{-1} = \frac{1}{\det A} \operatorname{adj} A$$
$$= \frac{1}{20} \begin{bmatrix} 7 & 1\\ -6 & 2 \end{bmatrix}.$$

Step 3 (Final step) (will have another look momentarily).

Use A^{-1} to find $A^{-1}\boldsymbol{b}$:

$$A^{-1}\boldsymbol{b} = \frac{1}{20} \begin{bmatrix} 7 & 1 \\ -6 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ -5 \end{bmatrix}$$
$$= \frac{1}{20} \begin{bmatrix} 7 \cdot 3 + 1 \cdot (-5) \\ (-6) \cdot 3 + 2 \cdot (-5) \end{bmatrix}$$
$$= \frac{1}{20} \begin{bmatrix} 16 \\ -28 \end{bmatrix} = \begin{bmatrix} \frac{4}{5} \\ -\frac{7}{5} \end{bmatrix}.$$

This is the answer \boldsymbol{x} . In sum:

• Below let me give an abridged version of the solution:

Problem (same as above). Solve

$$2x - y = 3,$$

$$6x + 7y = -5.$$

Solution. Let

$$A = \begin{bmatrix} 2 & -1 \\ 6 & 7 \end{bmatrix}, \quad x = \begin{bmatrix} x \\ y \end{bmatrix}, \quad b = \begin{bmatrix} 3 \\ -5 \end{bmatrix},$$
so the given system is $Ax = b$. We may solve this as

$$A^{-1} \qquad b$$

$$\| \qquad \| \qquad \|$$

$$x = A^{-1}b = \frac{1}{2 \cdot 7 - (-1) \cdot 6} \begin{bmatrix} 7 & 1 \\ -6 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ -5 \end{bmatrix}$$

$$\| \qquad \|$$

$$\frac{1}{\det A} \qquad \operatorname{adj} A$$

$$= \frac{1}{20} \begin{bmatrix} 7 \cdot 3 + 1 \cdot (-5) \\ (-6) \cdot 3 + 2 \cdot (-5) \end{bmatrix} = \begin{bmatrix} \frac{4}{5} \\ -\frac{7}{5} \end{bmatrix}.$$

The above is a $\underline{\text{template}}$. I want you to write up your solution this way.

• All that said, the last step warrants another look. We 'instinctively' converted the part

$$\begin{bmatrix} 7 & 1 \\ -6 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ -5 \end{bmatrix}$$

into

$$\begin{bmatrix} 7 \cdot 3 + 1 \cdot (-5) \\ (-6) \cdot 3 + 2 \cdot (-5) \end{bmatrix}.$$

And that's the correct step. Actually this conversion is something we already 'subconsciously' knew. Indeed, at the very beginning we saw

(@)
$$\begin{cases} 2x - y = 3, \\ 6x + 7y = -5 \end{cases}$$

(the original problem), and we immediately rewrote it as

$$\begin{bmatrix} 2 & -1 \\ 6 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ -5 \end{bmatrix},$$

which means that we knew that $\begin{bmatrix} 2x + (-1)y \\ 6x + 7y \end{bmatrix}$ (= the vector made out of

the left-hand sides of the two equations in (@) and $\begin{bmatrix} 2 & -1 \\ 6 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ are one

and the same. Stated in other words, we knew that the correct conversion of $\begin{bmatrix} 2 & -1 \\ 6 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \text{ is } \begin{bmatrix} 2x + (-1)y \\ 6x + 7y \end{bmatrix}.$ Repeat:

$$\begin{bmatrix} 2 & -1 \\ 6 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x + (-1)y \\ 6x + 7 & y \end{bmatrix}.$$

The following is in a similar vein:

$$\begin{bmatrix} 7 & 1 \\ -6 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ -5 \end{bmatrix} = \begin{bmatrix} 7 \cdot 3 + 1 \cdot (-5) \\ (-6) \cdot 3 + 2 \cdot (-5) \end{bmatrix}.$$

• More generally:

Like last time, we must *officially* declare it to be the rule that is going to be enforced throughout. So, here we go:

• Rule.
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} p \\ r \end{bmatrix} = \begin{bmatrix} ap + br \\ cp + dr \end{bmatrix}.$$

Paraphrase:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad \boldsymbol{x} = \begin{bmatrix} p \\ r \end{bmatrix}$$
$$\implies \qquad A\boldsymbol{x} = \begin{bmatrix} ap + br \\ cp + dr \end{bmatrix}.$$

• I'm sure you got this. But just in case, I want to offer the following breakdown:

Break-down. We are going to do

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} p \\ r \end{bmatrix} = \begin{bmatrix} \diamond \\ \bullet \\ \bullet \end{bmatrix}.$$

(i) To find \diamondsuit , observe

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} p \\ r \end{bmatrix} = \begin{bmatrix} ap+br \\ \bullet \end{bmatrix}$$

(ii) Next, to find \clubsuit , observe

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} p \\ r \end{bmatrix} = \begin{bmatrix} ap+br \\ cp+dr \end{bmatrix}$$

٠

Example 2. For $A = \begin{bmatrix} 5 & -2 \\ 8 & -9 \end{bmatrix}$, $\boldsymbol{x} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$, we have $A \boldsymbol{x} = \begin{bmatrix} 5 & -2 \\ 8 & -9 \end{bmatrix} \begin{bmatrix} 6 \\ 4 \end{bmatrix}$ $= \begin{bmatrix} 5 \cdot 6 + (-2) \cdot 4 \\ 8 \cdot 6 + (-9) \cdot 4 \end{bmatrix} = \begin{bmatrix} 22 \\ 12 \end{bmatrix}.$

Exercise 1. Perform each of the following multiplications:

(1) $\begin{bmatrix} 3 & \frac{1}{2} \\ \frac{5}{2} & -1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix}$. (2) $A\boldsymbol{x}$, where $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\boldsymbol{x} = \begin{bmatrix} p \\ q \end{bmatrix}$. (3) $A\boldsymbol{x}$, where $A = \begin{bmatrix} 1 & 2 \\ -6 & 8 \end{bmatrix}$, $\boldsymbol{x} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. (4) $A\boldsymbol{x}$, where $A = \begin{bmatrix} 3 & -1 \\ 4 & -1 \end{bmatrix}$, $\boldsymbol{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Exercise 2. Solve each of the following systems of equations using matrices:

(1)
$$\begin{cases} 3x + 6y = 4, \\ 7x + y = 1. \end{cases}$$
 (2)
$$\begin{cases} \frac{1}{3}x + 4y = 4, \\ -\frac{2}{3}x + y = \frac{4}{3} \end{cases}$$

• Matrix multiplication.

Now let's forget about solving systems of equations. The second topic of the day is completely something else. Well, that's not entirely true — it is actually a tweak of what you've just seen. Instead of multiplying a matrix with a vector , like

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} p \\ r \end{bmatrix},$$

how about multiplying a matrix with a matrix , like

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} p & q \\ r & s \end{bmatrix} ?$$

Sure. Here is the rule that we hereby officially declare to permanently enforce:

- **Rule.** $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} p & q \\ r & s \end{bmatrix} = \begin{bmatrix} ap + br & aq + bs \\ cp + dr & cq + ds \end{bmatrix}.$
- Paraphrase:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad B = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$$
$$\implies \qquad AB = \begin{bmatrix} ap + br & aq + bs \\ cp + dr & cq + ds \end{bmatrix}.$$

Do you clearly see how it works? The following breakdown helps:

• Break-down: First and foremost, acknowledge the following:

A and B are both 2×2 matrices $\implies AB$ is a 2×2 matrix. In other words:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} p & q \\ r & s \end{bmatrix} = \begin{bmatrix} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ &$$

(i) Let us find \diamondsuit in

Since \diamond is in the top-left, accordingly highlight the portion of A and B, like

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} p & q \\ r & s \end{bmatrix} = \begin{bmatrix} \diamondsuit \\ \hline \end{bmatrix}$$

.

•

•

 \diamond is ap + br:

(ii) Next, let us find \heartsuit in

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} p & q \\ r & s \end{bmatrix} = \begin{bmatrix} ap+br & \heartsuit \\ \hline & & & & \end{bmatrix}.$$

Since \heartsuit is in the top-right, accordingly highlight the portion of A and B, like

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} p & q \\ r & s \end{bmatrix} = \begin{bmatrix} ap+br & \heartsuit \\ \hline & & & \end{bmatrix}$$

 \heartsuit is aq + bs:

(iii) Similarly, we can find \clubsuit in

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} p & q \\ r & s \end{bmatrix} = \begin{bmatrix} ap+br \\ \blacksquare \end{bmatrix}$$

by highlighting

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} p & q \\ r & s \end{bmatrix} = \begin{bmatrix} ap+br & aq+bs \\ \clubsuit & & \end{bmatrix}.$$

 \clubsuit is cp + dr:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} p & q \\ r & s \end{bmatrix} = \begin{bmatrix} ap+br \\ cp+dr \end{bmatrix} = \begin{bmatrix} aq+bs \\ cp+dr \end{bmatrix}.$$

(iv) Finally, we can find \blacklozenge in

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} p & q \\ r & s \end{bmatrix} = \begin{bmatrix} ap+br \\ cp+dr \end{bmatrix} \xrightarrow{aq+bs}$$

by highlighting

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} p & q \\ r & s \end{bmatrix} = \begin{bmatrix} ap+br \\ cp+dr \end{bmatrix} \cdot \begin{bmatrix} aq+bs \\ \bullet \end{bmatrix} \cdot$$

• is cq + ds:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} p & q \\ r & s \end{bmatrix} = \begin{bmatrix} ap+br \\ cp+dr \end{bmatrix} \begin{bmatrix} aq+bs \\ cq+ds \end{bmatrix}.$$

• <u>In sum, calculating</u> $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} p & q \\ r & s \end{bmatrix}$ <u>takes four steps</u>: $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} p & q \\ r & s \end{bmatrix} = \begin{bmatrix} \diamondsuit & \bigtriangledown & \bigcirc \\ \hline \clubsuit & & \frown & \end{bmatrix}$

Those four steps : \Diamond , \heartsuit , \clubsuit and \blacklozenge , are performed independently.

• Alternative perspective. Below is another way to look at it.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} p & q \\ r & s \end{bmatrix}$$

is like

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} p & q \\ r & s \end{bmatrix},$$
$$\begin{bmatrix} 1 & p & q \\ r & s \end{bmatrix},$$
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ A & \mathbf{x} & \mathbf{y} \end{bmatrix}$$

which is basically

$$A\begin{bmatrix} \boldsymbol{x} & \boldsymbol{y}\end{bmatrix}.$$

And this is going to be converted to

$$\left[\begin{array}{cc} A\boldsymbol{x} & A\boldsymbol{y} \end{array}\right],$$

where $A\boldsymbol{x}$ and $A\boldsymbol{y}$ are exactly as we defined earlier.

• Paraphrase of 'Rule' on page 7.

$$A\begin{bmatrix} \boldsymbol{x} & \boldsymbol{y} \end{bmatrix} = \begin{bmatrix} A\boldsymbol{x} & A\boldsymbol{y} \end{bmatrix}.$$

Example 3. For $A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 2 & -1 \\ -1 & 8 \end{bmatrix}$, we have $AB = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 8 \end{bmatrix}$ $= \begin{bmatrix} 1 \cdot 2 + 2 \cdot (-1) & 1 \cdot (-1) + 2 \cdot 8 \\ 4 \cdot 2 + 2 \cdot (-1) & 4 \cdot (-1) + 2 \cdot 8 \end{bmatrix}$ $= \begin{bmatrix} 0 & 15 \\ 6 & 12 \end{bmatrix}$, $BA = \begin{bmatrix} 2 & -1 \\ -1 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}$ $= \begin{bmatrix} 2 \cdot 1 + (-1) \cdot 4 & 2 \cdot 2 + (-1) \cdot 2 \\ (-1) \cdot 1 + 8 \cdot 4 & (-1) \cdot 2 + 8 \cdot 2 \end{bmatrix}$ $= \begin{bmatrix} -2 & 2 \\ 31 & 14 \end{bmatrix}$.

• Important (!) As this example shows, AB and BA are usually not equal .

Exercise 3. Perform each of the following multiplications:

- (1) $\begin{bmatrix} -2 & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 6 & 5 \end{bmatrix}$. (2) $\begin{bmatrix} 1 & -2 \\ -4 & 8 \end{bmatrix} \begin{bmatrix} 3 & 7 \\ -1 & 0 \end{bmatrix}$.
- (3) $\begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} \frac{3}{2} & 1 \\ 1 & \frac{-3}{2} \end{bmatrix}$. (4) $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

(5)
$$AB$$
, where $A = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$, $B = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$,

(6)
$$AB$$
, where $A = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{-1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$, $B = \begin{bmatrix} \frac{1}{2} & \frac{-\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$.

(7)
$$AB$$
, where $A = B = \begin{bmatrix} \frac{-1+\sqrt{5}}{4} & \frac{-\sqrt{10+2\sqrt{5}}}{4} \\ \frac{\sqrt{10+2\sqrt{5}}}{4} & \frac{-1+\sqrt{5}}{4} \end{bmatrix}$.