# Math 290 ELEMENTARY LINEAR ALGEBRA REVIEW OF LECTURES - III 

 August 28 (Mon), 2017Instructor: Yasuyuki Kachi
Line \#: 25751.
§3. Matrix arithmetic - I. Inverse of a matrix.

- Today's agenda: Matrix arithmetic. Ready? Do you guys remember the following from Day 1?
(*) $\left\{\begin{array}{l}4 x+3 y=5, \\ 2 x-6 y=-7\end{array}\right\} \stackrel{\text { "equivalent" }}{\Longleftrightarrow}\left[\begin{array}{cc}4 & 3 \\ 2 & -6\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}5 \\ -7\end{array}\right]$

This means that the box on the right is a mere paraphrase of the box on the left. I want you to focus on the one in the right . Let's give names for the objects in sight:


So the equation is basically

$$
A x=\boldsymbol{b}
$$

Not for nothing, let's pretend that, in this last equation, all the letters are numbers. How would you solve it for $\boldsymbol{x}$ (the unknown)? Yes. Just like

$$
\begin{array}{ccc}
3 x=1 & \underset{\text { solve }}{\Longrightarrow} & x=\frac{1}{3}=3^{-1}, \\
\pi x=\sqrt{2} & \underset{\text { solve }}{\Longrightarrow} & x=\frac{\sqrt{2}}{\pi}=\pi^{-1} \cdot \sqrt{2},
\end{array}
$$

we would solve $A \boldsymbol{x}=\boldsymbol{b}$ as

$$
" x=\frac{b}{A} "
$$

or

$$
" x=A^{-1} b ",
$$

with quote-unquote" ". However, in reality, $A$ is not a number. $A$ is a matrix. So $\xlongequal{\text { the division }} \frac{b}{A} \quad \underline{\underline{\text { does not make sense as it stands. }}} \xlongequal{\text { But we might still be able to }}$ $\underline{\underline{\text { make sense of }}} A^{-1}, \underline{\underline{\text { as a matrix, in such a way that }}} \boldsymbol{x}=A^{-1} \boldsymbol{b} \quad \underline{\underline{\text { is indeed the }}}$ correct answer for the equation.

- Let's cut to the chase again: I hereby share the following information:

$$
\begin{aligned}
& \underline{\text { The fraction }} \frac{\boldsymbol{b}}{A} \xlongequal{\text { does not quite make sense. }} \xlongequal{\text { However, good news: }} \\
& \xlongequal{A^{-1} \text { makes sense, as a } 2 \times 2 \text { matrix, and thus }} A^{-1} \boldsymbol{b} \underline{\underline{\text { also makes sense }},} \\
& \underline{\underline{\text { under one condition: }} \operatorname{det} A \neq 0 .}
\end{aligned}
$$

So,

$$
A x=b \quad \underset{\substack{\text { can solve, } \\ \text { if } \operatorname{det} A \neq 0}}{\Longrightarrow} \quad x=A^{-1} b
$$

This is a legit way to solve the equation

$$
A x=b
$$

Most importantly, I must tell you how to form $A^{-1}$ out of $A$ :

## Inverse of a $2 \times 2$ matrix.

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. The inverse $A^{-1}$ of $A$ is the following matrix:

$$
A^{-1}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\frac{d}{a d-b c} & \frac{-b}{a d-b c} \\
\frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right]
$$

$A^{-1}$ exists, provided $\operatorname{det} A=a d-b c \neq 0$.

- All right, let's dissect this:

$$
\left[\begin{array}{cc}
\frac{d}{a d-b c} & \frac{-b}{a d-b c} \\
\frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right] .
$$

A little fuss - this matrix is so crammed, because it is made of fractions. Those fractions aren't random, though. On second look, realize that the denominators are all $a d-b c$, which is nothing else but $\operatorname{det} A$. So, we might as well write this as something like

$$
\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right], \quad \text { or } \quad \frac{1}{\operatorname{det} A}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

Technically, though, we need to "validate" that. Here is what I mean: Agree that

- the part $\frac{1}{a d-b c} \quad\left(=\frac{1}{\operatorname{det} A}\right) \quad$ is a scalar,
whereas
- the part $\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right] \quad$ is a matrix.

We have juxtaposed these two ingredients, and we mean it to signify

$$
" \text { a scalar being multiplied to a matrix } "
$$

The problem is, we haven't officially implemented such an operation in this class yet. Technically speaking, no matter how natural it is that

$$
\begin{array}{cc}
10\left[\begin{array}{ll}
8 & 3 \\
2 & 7
\end{array}\right] & \text { means }
\end{array}\left[\begin{array}{cc}
80 & 30 \\
20 & 70
\end{array}\right],
$$

etc., we still need to officially declare that

$$
s\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \text { means } \quad\left[\begin{array}{cc}
s a & s b \\
s c & s d
\end{array}\right] .
$$

Nothing really stops us from making such a declaration. Setting such a rule is universally adopted. So, here we go, an official declaration of the rule:

- Definition (Scalar multiplied to a matrix). Let $s$ be a scalar. Then

$$
s\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
s a & s b \\
s c & s d
\end{array}\right]
$$

Paraphrase:

$$
\text { If } \begin{aligned}
& A= {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \text { and } \quad s: \text { a scalar } } \\
& \Longrightarrow \\
& s A=\left[\begin{array}{cc}
s a & s b \\
s c & s d
\end{array}\right] .
\end{aligned}
$$

Example 1.
(1) $3\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{cc}3 & 6 \\ 9 & 12\end{array}\right]$.

$$
4\left[\begin{array}{ll}
3 & 3  \tag{2}\\
3 & 3
\end{array}\right]=\left[\begin{array}{ll}
12 & 12 \\
12 & 12
\end{array}\right]
$$

(4)

$$
\begin{align*}
\frac{1}{7}\left[\begin{array}{cc}
5 & 7 \\
-1 & 0
\end{array}\right] & =\left[\begin{array}{cc}
\frac{5}{7} & 1 \\
\frac{-1}{7} & 0
\end{array}\right] .  \tag{3}\\
\frac{9}{2}\left[\begin{array}{ll}
\frac{2}{9} & 2 \\
\frac{4}{9} & \frac{1}{9}
\end{array}\right] & =\left[\begin{array}{ll}
1 & 9 \\
2 & \frac{1}{2}
\end{array}\right] .
\end{align*}
$$

$$
1\left[\begin{array}{cc}
0 & -2  \tag{5}\\
6 & 3
\end{array}\right]=\left[\begin{array}{cc}
0 & -2 \\
6 & 3
\end{array}\right]
$$

- An obvious generalization of (5) is

$$
1\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] .
$$

Paraphrase:

$$
\text { If } \quad A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \Longrightarrow \quad 1 A=A
$$

- Definition (negation).

$$
-\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
-a & -b \\
-c & -d
\end{array}\right]
$$

Paraphrase:

$$
\text { If } A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \Longrightarrow \quad-A=\left[\begin{array}{ll}
-a & -b \\
-c & -d
\end{array}\right]
$$

Example 2. $\quad 0\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right], \quad 8\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.

- An obvious generalization of Example 2 is

$$
0\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right], \quad s\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

- We denote $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ as $O$. Then we can paraphrase it as:

$$
\begin{aligned}
\text { If } & A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \text { and } \quad s: \text { a scalar } \\
& \Longrightarrow \quad 0 A=O, \quad s O=O .
\end{aligned}
$$

Example 3a.

$$
(-1)\left[\begin{array}{ll}
3 & 4 \\
5 & 9
\end{array}\right]=\left[\begin{array}{ll}
-3 & -4 \\
-5 & -9
\end{array}\right]
$$

Example 3b.

$$
-\left[\begin{array}{ll}
3 & 4 \\
5 & 9
\end{array}\right]=\left[\begin{array}{ll}
-3 & -4 \\
-5 & -9
\end{array}\right]
$$

- As you can clearly see, the negative of a matrix and the $(-1)$ times the same matrix are always equal:

$$
(-1)\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=-\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Paraphrase:

$$
\text { If } \quad A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \Longrightarrow \quad(-1) A=-A
$$

Exercise 1. Write each of the following in the form
(1) $3\left[\begin{array}{cc}-4 & 2 \\ 6 & 5\end{array}\right]$.
(2) $\frac{1}{2}\left[\begin{array}{cc}10 & 12 \\ 8 & 4\end{array}\right]$.
(3) $\frac{1}{8}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
(4) $(-2)\left[\begin{array}{cc}1 & -3 \\ -3 & 1\end{array}\right]$.
(5) $1\left[\begin{array}{cc}7 & -5 \\ \frac{1}{2} & 1\end{array}\right]$.
(6) $0\left[\begin{array}{cc}124 & 242 \\ 163 & 89\end{array}\right]$.
(7) $1000\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.

Exercise 2. Write each of the following in the form

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] .} \\
& \text { (1) }-\left[\begin{array}{cc}
-6 & -8 \\
3 & 4
\end{array}\right] \text {. } \\
& \text { (2) }-\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \text {. } \\
& \text { (3) }-\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text {. }
\end{aligned}
$$

Exercise 3. For $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, define

$$
A^{T}=\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right] \quad(\text { the transpose } \quad \text { of } A) .
$$

Assume $A^{T}=-A$. Prove that there is a scalar $s$ such that

$$
A=s\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

- We were originally talking about the inverse of a matrix. We then got side-tracked a bit along the way. So, back to page 3:

$$
A^{-1}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\frac{d}{a d-b c} & \frac{-b}{a d-b c} \\
\frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right]
$$

Now that we have established the concept "a scalar multipled to a matrix", we are officially entitled to paraphrase the definition of the inverse in page 3:

## Inverse of a $2 \times 2$ matrix, paraphrased.

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. The inverse $A^{-1}$ of $A$ is the following matrix:

$$
\begin{aligned}
A^{-1}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1} & =\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \\
& =\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
\end{aligned}
$$

$A^{-1}$ exists, provided $\quad \operatorname{det} A=a d-b c \neq 0$.

## - Adjoint matrix.

For convenience of reference, we give it a name for a part of the $A^{-1}$ formation:

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \Longrightarrow \quad A^{-1}=\frac{1}{\operatorname{det} A} \underbrace{\operatorname{adj} A}_{\|}
$$

So,

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \Longrightarrow \quad \text { adj } A=\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

We call $\operatorname{adj} A$ the adjoint matrix of $A$.

- We may accordingly further paraphrase the above:

Inverse of a $2 \times 2$ matrix, paraphrased - II.

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. The inverse $A^{-1}$ of $A$ is the following matrix:

$$
A^{-1}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A,
$$

where

$$
\begin{aligned}
& \operatorname{det} A=a d-b c, \quad \text { and } \\
& \operatorname{adj} A=\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
\end{aligned}
$$

$A^{-1}$ exists, provided $\quad \operatorname{det} A=a d-b c \neq 0$.

- Let's calculate $A^{-1}$ for some concete matrix $A$.

Example 4. $\quad A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}2 & 3 \\ 4 & 7\end{array}\right] . \quad$ Let's find $A^{-1}$.

Here is how it goes:

Step 1. Calculate the determinant of $A$ :

$$
\begin{aligned}
\operatorname{det} A=\left|\begin{array}{ll}
2 & 3 \\
4 & 7
\end{array}\right| & =2 \cdot 7-3 \cdot 4 \\
& =2
\end{aligned}
$$

Step 2. Form the adjoint of $A$ :

$$
\begin{aligned}
\operatorname{adj} A & =\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \\
& =\left[\begin{array}{cc}
7 & -3 \\
-4 & 2
\end{array}\right]
\end{aligned}
$$

Step 3. Finish it off:

$$
\begin{aligned}
A^{-1} & =\frac{1}{\operatorname{det} A} \operatorname{adj} A \\
& =\frac{1}{2}\left[\begin{array}{cc}
7 & -3 \\
-4 & 2
\end{array}\right] .
\end{aligned}
$$

You may write the answer as

$$
\left[\begin{array}{cc}
\frac{7}{2} & \frac{-3}{2} \\
-2 & 1
\end{array}\right]
$$

which is optional.

Example 5. $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}3 & -2 \\ -5 & 3\end{array}\right] . \quad$ Let's find $A^{-1}$.

Here is how it goes:

Step 1. Calculate the determinant of $A$ :

$$
\begin{aligned}
\operatorname{det} A=\left|\begin{array}{cc}
3 & -2 \\
-5 & 3
\end{array}\right| & =3 \cdot 3-(-2) \cdot(-5) \\
& =-1
\end{aligned}
$$

Step 2. Form the adjoint of $A$ :

$$
\begin{aligned}
\operatorname{adj} A & =\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \\
& =\left[\begin{array}{ll}
3 & 2 \\
5 & 3
\end{array}\right] .
\end{aligned}
$$

Step 3. Finish it off:

$$
\begin{aligned}
A^{-1} & =\frac{1}{\operatorname{det} A} \operatorname{adj} A \\
& =\frac{1}{-1}\left[\begin{array}{ll}
3 & 2 \\
5 & 3
\end{array}\right] \\
& =\left[\begin{array}{ll}
-3 & -2 \\
-5 & -3
\end{array}\right] .
\end{aligned}
$$

- What if the determinant of $A$ equals 0 ?

A natural question arises. What if $\operatorname{det} A=0$ for a given matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ ? What can one say about $A^{-1}$ ?

- The answer is simple: In such a case, the inverse $A^{-1}$ does not exist.

Example 6. $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}4 & 8 \\ 1 & 2\end{array}\right] . \quad$ Let's decide whether $A^{-1}$ exists.

For that matter, it suffices to calculate the determinant of $A$ :

$$
\begin{aligned}
\operatorname{det} A=\left|\begin{array}{ll}
4 & 8 \\
1 & 2
\end{array}\right| & =4 \cdot 2-8 \cdot 1 \\
& =0
\end{aligned}
$$

So, we conclude that $A^{-1}$ does not exist.

Exercise 4. Decide whether the inverse $A^{-1}$ of $A$ exists, in each of (1-12) below. If it does, then calculate it.
(1) $\quad A=\left[\begin{array}{cc}5 & 7 \\ -1 & 3\end{array}\right]$.
(2) $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$.
(3) $\quad A=\left[\begin{array}{ll}6 & 6 \\ 6 & 6\end{array}\right]$.
(4) $A=\left[\begin{array}{cc}0 & -2 \\ 2 & 0\end{array}\right]$.
(5) $\quad A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
(6) $A=\left[\begin{array}{ll}1 & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{9}\end{array}\right]$.
(7) $\quad A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
(8) $A=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$.
(9) $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
(10) $A=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]$.
(11) $A=\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{-1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right]$.
(12) $A=\left[\begin{array}{cc}\frac{-1+\sqrt{5}}{4} & \frac{-\sqrt{10+2 \sqrt{5}}}{4} \\ \frac{\sqrt{10+2 \sqrt{5}}}{4} & \frac{-1+\sqrt{5}}{4}\end{array}\right]$.

## - $3 \times 3$ counterpart.

Finally, let's take a quick glance at how the above picture is carried over to the $3 \times 3$ case. Don't get carried away, for the complexity of the formula. Today we take a peek at it. We are going to cross-examine it in the forthcoming lectures.

## Inverse of a $3 \times 3$ matrix.

Let $A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]$. The inverse $A^{-1}$ of $A$ is the following matrix:

$$
A^{-1}=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right]^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A
$$

where

$$
\operatorname{det} A=a_{1} b_{2} c_{3}-a_{1} b_{3} c_{2}-a_{2} b_{1} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}-a_{3} b_{2} c_{1}
$$

and

$$
\operatorname{adj} A=\left[\begin{array}{lll}
+\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right| & -\left|\begin{array}{ll}
a_{2} & a_{3} \\
c_{2} & c_{3}
\end{array}\right| & +\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \\
-\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right| & +\left|\begin{array}{ll}
a_{1} & a_{3} \\
c_{1} & c_{3}
\end{array}\right| & -\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \\
+\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right| & -\left|\begin{array}{ll}
a_{1} & a_{2} \\
c_{1} & c_{2}
\end{array}\right| & +\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|
\end{array}\right]
$$

$A^{-1}$ exists, provided $\operatorname{det} A \neq 0$.

Exercise 5. Decide whether the inverse $A^{-1}$ of $A$ exists, in each of (1-6) below. If it does, then calculate it.
(1) $A=\left[\begin{array}{ccc}2 & 1 & -2 \\ 5 & -4 & -1 \\ 1 & -3 & 4\end{array}\right]$. (2) $A=\left[\begin{array}{ccc}1 & 3 & 1 \\ 2 & 4 & 1 \\ 1 & -2 & -2\end{array}\right]$.
(3) $A=\left[\begin{array}{ccc}3 & 4 & -4 \\ 2 & 1 & 4 \\ -2 & 4 & 1\end{array}\right]$.
(4) $A=\left[\begin{array}{ccc}3 & 5 & 10 \\ 3 & 1 & 6 \\ -2 & -2 & -6\end{array}\right]$.
(5) $A=\left[\begin{array}{ccc}1 & \sqrt{2} & \sqrt{3} \\ \sqrt{2} & \frac{-2-3 \sqrt{6}}{5} & \frac{6-\sqrt{6}}{5} \\ \sqrt{3} & \frac{6-\sqrt{6}}{5} & \frac{-3-2 \sqrt{6}}{5}\end{array}\right]$.
(6) $A=\left[\begin{array}{ccc}\frac{2+3 \sqrt{2}}{8} & \frac{-2 \sqrt{3}+\sqrt{6}}{8} & \frac{\sqrt{6}}{4} \\ \frac{-2 \sqrt{3}+\sqrt{6}}{8} & \frac{6+\sqrt{2}}{8} & \frac{\sqrt{2}}{4} \\ -\frac{\sqrt{6}}{4} & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{2}\end{array}\right]$.

