
Math 290 ELEMENTARY LINEAR ALGEBRA

REVIEW OF LECTURES – XVII

November 6 (Mon) / November 13 (Mon), 2017
Instructor: Yasuyuki Kachi

Line #: 25751.

• Double sign.

Today we are going to see the double sign ‘±’ everywhere. I’m sure you are
completely familiar with it. Still, there are some subtle aspects of it, which people
sometimes get confused about. In this class, we cannot afford to be sloppy about
those aspects. So today let me start with that, which itself is not linear algebra but
something more basic. Then once I’m convinced you and I are on the same page, at
that point let’s resume to linear algebra. Sounds good? I want to use some concrete
examples, and you are going to see what I’m talking about. First, check this out:

Example 1. Needless to say,

2 ± 3

means

2 + 3 and 2 − 3,

stuffed together in one place. So the expression 2 ± 3 represents two numbers: 5,
and −1. This example is no brainer.

Exercise 1. (1)
3 ± 11

2
represents what number(s)?

(2) 2 ±
√

3 represents what number(s)?

(3) Use ‘±’ to confine the following two numbers within one expression: 6 and 1.

• As easy as the above may sound, we need to be very cautious when it comes to

“ double sign in the same order ”.

First and foremost, this is an ‘enforcement’. I enforce this from time to time by
necessity during my lectures. And that also means you enforce this from time to
time by necessity in your papers. Examples below best capture the crux of the
matter:
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Example 2. Suppose “double sign in the same order” is enforced. Then

1 −
(

±
√

2
)

is simplified as

1 ∓
√

2 .

Notice that I used

‘ ∓ ’.

Let’s dissect:

◦ ‘±’ means ‘+’ first, ‘−’ second.

◦ ‘∓’ means ‘−’ first, ‘+’ second.

Repeat: Under “double sign in the same order”,

1 −
(

±
√

2
)

= 1 ∓
√

2 .

Example 3. Suppose “double sign in the same order” is enforced. Then

±7 ± 2

means

7 + 2 and −7 − 2,

which are +9 and −9. So these are put together as

±9.

Repeat: Under “double sign in the same order”,

±7 ± 2 = ±9.
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Example 4. Suppose “double sign in the same order” is enforced. Then

±13 ∓ 8

means

+13 − 8 and −13 + 8,

which are +5 and −5. So these are put together as

±5.

Repeat: Under “double sign in the same order”,

±13 ∓ 8 = ±5.

Example 5. Suppose “double sign in the same order” is enforced. Then

±8 −
(

∓ 2
)

is simplified as what? Yes, this is simplified as

±10.

Indeed, negating ∓ will give rise to ±, so this is the same as ±8 ± 2.

Example 6. Under “double sign in the same order” being enforced,

(a) ±13 ± 3
√
3 = ±

(

13 + 3
√

3
)

.

(b) ±13 ∓ 3
√

3 = ±
(

13 − 3
√

3
)

.

Indeed, as for (a), the two sides both represent +13 + 3
√

3 , and −13− 3
√

3 ,

in this order. As for (b), the two sides both represent +13−3
√

3 , and −13+3
√

3 ,

in this order.
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Exercise 2. Double sign in the same order. True or false:

(1) 8 −
(

1 ±
√

5
)

= 7 ±
√

5 (?) (2) ±
√

2 ∓ 2
√

2 = ±3
√

2 (?)

(3) ∓4 ±
√

6 = ∓
(

4 −
√

6
)

(?)

Exercise 3. Double sign in the same order. Simplify:

(1) 2
√

2 −
(

∓3 + 2
√

2
)

. (2) ±3
√

6 −
(

1 ± 4
√

6
)

.

(3)
−5 ±

√
10

2
+

−3 ± 3
√

10

2
.

Example 7. Under “double sign in the same order” being enforced,

−4 ±
√

21

2
· 4 ±

√
21

2
=

(

−4 +
(

±
√

21
)

)(

4 +
(

±
√

21
)

)

2 · 2

=
−4 · 4 +

(

±
√

21
)(

±
√

21
)

4

=
−42 +

(√
21
)2

4

=
−16 + 21

4
=

5

4
.

Example 8. Under “double sign in the same order” being enforced,

7 ± 5
√
2

2
· 7 ∓ 5

√
2

2
=

(

7 +
(

± 5
√

2
)

)(

7 −
(

± 5
√

2
)

)

2 · 2

=
7 · 7 −

(

± 5
√
2
)(

± 5
√

2
)

4

=
72 −

(

5
√

2
)2

4

=
49−50

4
= − 1

4
.
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Exercise 4. Double sign in the same order. Simplify:

(1) ±a ∓ a. (2) ±a ± 2a. (3) ±4a ∓ 9a.

(4)
(

± a
)2

. (5)
(

± a
)(

∓ a
)

.

Exercise 5. Double sign in the same order. Simplify:

(1)
(

1 ±
√

2
)(

1 ∓
√

2
)

. (2)

√
6 ± 2

√
5

2
·

√
6 ∓ 2

√
5

2
.

(3)
(

± 6 ±
√

11
)(

∓ 6 ±
√

11
)

.

Exercise 6. Double sign in the same order. Expand:

(1) a
(

c ± d
)

. (2) a
(

c ∓ d
)

.

(3) ±b
(

c ± d
)

. (4) ∓b
(

c ± d
)

.

(5a)
(

a ± b
)(

c ± d
)

. (5b)
(

a ± b
)2

.

(6a)
(

a ± b
)(

c ∓ d
)

. (6b)
(

a ± b
)(

a ∓ b
)

.

(7a)
(

a + b
)(

± c ± d
)

. (7b)
(

a + b
)(

± a ± b
)

.

(8a)
(

a − b
)(

± c ± d
)

. (8b)
(

a − b
)(

± a ± b
)

.

(9)
(

1 ± b ∓ c
)(

1 ∓ b ± c
)

.

(10)
(

a ± b ± c ± d
)(

a ± b ∓ c ∓ d
)(

a ∓ b ± c ∓ d
)(

a ∓ b ∓ c ± d
)

.
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• More eigenvalues.

Let’s take a look:

A =

[

3 1
1 2

]

.

What about it? Let’s calculate the eigenvalues of A. I almost see this coming:
“Again?” True, we have already practiced a ton of this. Why not move on to the
next topic? Not so fast. Let’s form the characteristic polynomial of A:

χA

(

λ
)

= det
(

λI − A
)

=

∣

∣

∣

∣

λ−3 −1
−1 λ−2

∣

∣

∣

∣

=
(

λ−3
)(

λ−2
)

−
(

−1
)

·
(

−1
)

= λ2 − 5λ + 6 − 1

= λ2 − 5λ + 5.

So, based on this, can you find the eigenvealues of A? Sure. This one doesn’t seem
to factor, though. But wait, we can always resort to the ‘Quadratic Formula’, right?
Now, don’t get freaked out, this is a good place to review that formula:

Quadratic formula.

The general quadratic equation is of the form

a x2 + b x + c = 0
(

a 6= 0
)

.

Here, x is the unknown , and a, b and c are knowns . Its roots are given by
the formula

x =
−b ±

√
b2 − 4ac

2a
.
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• Now, can you pull this formula directly from the equation? I’m sure you can. I
leave it as an exercise.

Exercise 7. Derive “Quadratic Formula” above, directly from the equation.

• Now, back to the matrix A =

[

3 1
1 2

]

. We were shooting for the eigenvalues

of A. For that matter, as usual, we need to solve

(∗) λ2 − 5λ + 5 = 0.

So a = 1, b = −5, c = 5. Note that the unknown is λ, instead of x. By
Quadratic Formula,

λ =
−
(

−5
)

±
√

(

−5
)2

− 4 · 1 · 5

2 · 1

=
5 ±

√
5

2
.

So, the two eigenvalues are

λ =
5 +

√
5

2
and λ =

5 −
√

5

2
.

All right. So, although we thought χA

(

λ
)

doesn’t factor, it indeed factors, as

χA

(

λ
)

= λ2 − 5λ + 5

=

(

λ − 5 +
√

5

2

) (

λ − 5 −
√

5

2

)

.



Note: You don’t have to write it as

(

λ − 5 ±
√

5

2

) (

λ − 5 ∓
√

5

2

)

.
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Next, can we find eigenvectors of A? Sure. Here we go, let’s find

◦ an eigenvector xxx =

[

x

y

]

of A associated with λ =
5 +

√
5

2
,

and also

◦ an eigenvector xxx =

[

x

y

]

of A associated with λ =
5 −

√
5

2
.

Good news: We don’t have to do it separately. The key is to throughout use the

double sign ‘±’ , and keep the following intact:

“ double sign in the same order ”.

Since A =

[

3 1
1 2

]

, the equation Axxx =
5 ±

√
5

2
xxx is

(#)

[

3 1
1 2

] [

x

y

]

=
5 ±

√
5

2

[

x

y

]

.

That is,


















3x + y =
5 ±

√
5

2
x,

x + 2y =
5 ±

√
5

2
y.

Shift the terms:


















1 ∓
√

5

2
x + y = 0,

x +
−1 ∓

√
5

2
y = 0.
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These equations are the essentially identical. You may or may not see it immediately.

But actually the second equation is obtained by just multiplying
−1 ∓

√
5

2
to the

two sides of the first equation. Indeed:

1 ∓
√

5

2
· −1 ∓

√
5

2
=

(

1 +
(

∓
√

5
)

)(

−1 +
(

∓
√

5
)

)

2 · 2

=
−12 +

(

∓
√

5
)2

4

=
−1 + 5

4
= 1.

So, ignore the second equation:

1 ∓
√

5

2
x + y = 0.

Clearly x = 1, y =
−1 ±

√
5

2
works. Thus:

◦ xxx± =





1

−1 ±
√

5

2



 is an eigenvector of A associated with the eigenvalue

λ =
5 ±

√
5

2
.

Diagonalization result. A =

[

3 1
1 2

]

is diagonalized as follows:

Q−1AQ =









5 +
√

5

2
0

0
5 −

√
5

2









, where Q =









1 1

−1 +
√

5

2

−1 −
√

5

2









.

9



• Non-real eigenvalues. Let’s take a look:

B =

[

2 1
−8 7

]

.

What about it? Let’s calculate the eigenvalues of B. “Aren’t we done with that?” I
know. I hate to be the bearer of bad news, but I still need to do a certain particular
kind, and this one falls into it. But actually this isn’t bad at all. You will see it.
Trust me. So, as usual, form the characteristic polynomial of B as a starter:

χB

(

λ
)

= det
(

λI − B
)

=

∣

∣

∣

∣

λ−2 −1
8 λ−7

∣

∣

∣

∣

=
(

λ−2
)(

λ−7
)

−
(

−1
)

· 8

= λ2 − 9λ + 14 + 8

= λ2 − 9λ + 22.

So, based on this, can you find the eigenvealues of B? Well, just like the last one,
this one doesn’t seem to factor, but we can always resort to ‘Quadratic Formula’,
right? Sure. So we end up having to solve

(#) λ2 − 9λ + 22 = 0.

Throw a = 1, b = −9, c = 22 into the Quadratic Formula:

λ =
−
(

−9
)

±
√

(

−9
)2

− 4 · 1 · 22

2 · 1

=
9 ±

√
−7

2
.
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Uh-hun. So, the two eigenvalues of B are

λ =
9 +

√
−7

2
and λ =

9 −
√

−7
2

.

All right. So, we got

χB

(

λ
)

= λ2 − 9λ + 22

=

(

λ − 9 +
√

−7
2

) (

λ − 9 −
√

−7
2

)

.

Oh, but wait... On a second look, −7 is sitting inside the square-root symbol. Is
that allowed?

• Complex numbers — Thumbnail sketch.

Sure, why not?
√

−7 is actually an example of a complex number . Remember
complex numbers from high school, right? Let’s recall that a number of the form

(♦) a +
√

−1 b
(

a, b : real numbers
)

is called a complex number . In case you are second-guessing how something like√
−7 can possibly be written as in (♦), check this out:

√
−7 = 0 +

√
−1 ·

√
7 .

In a similar vein,

9 +
√

−7
2

, and
9 −

√
−7

2
,

are complex numbers, because they are rewritten as

9

2
+

√
−1 ·

√
7

2
, and

9

2
−

√
−1 ·

√
7

2
,

respectively.
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• Now, here is my point:

“ The two complex numbers

λ =
9 +

√
−7

2
and λ =

9 −
√

−7
2

are the legit roots of the equation

(#) λ2 − 9λ + 22 = 0.

Nothing stops us from viewing

λ =
9 +

√
−7

2
and λ =

9 −
√

−7
2

”
as the legit eigenvalues of the matrix B =

[

2 1
−8 7

]

.

— Uh-huh. All right.

So, can I ask you a favor? Can you please just chew and swallow the above? I
know, it involves complex numbers, and I should better give you a crash course on
that, some nitty-gritty of complex numbers. As far as that department goes, so far
I only threw the bare minimum, no more than a thumnail sketch of it. But what I
just gave you actually suffices, at least for the rest of today. The truth is, there are
a whole lot more to it than that, there are many, many aspects of complex numbers
you guys are probably unfamiliar with. I plan to delve into those at some point. But
not today. Let’s look forward to it. So now I want to go ahead and proceed with
finding the eigenvectors of B. Here we go:

◦ an eigenvector xxx± =

[

x

y

]

of A associated with λ =
9 ±

√
−7

2
.
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Once again: We don’t have to do it separately. The key is to throughout use the

double sign ‘±’ , and keep the following intact:

“ double sign in the same order ”.

Since B =

[

2 1
−8 7

]

, the equation Bxxx =
9 ±

√
−7

2
xxx is

(@)

[

2 1
−8 7

] [

x

y

]

=
9 ±

√
−7

2

[

x

y

]

.

That is,


















2x + y =
9 ±

√
−7

2
x,

−8x + 7y =
9 ±

√
−7

2
y.

Shift the terms:


















−5 ∓
√

−7
2

x + y = 0,

−8 x +
5 ∓

√
−7

2
y = 0.

These equations are the essentially identical. Indeed, the second equation is obtained

by just multiplying
5 ∓

√
−7

2
to the two sides of the first equation:

−5 ∓
√

−7
2

· 5 ∓
√

−7
2

=

(

−5 +
(

∓
√

−7
)

)(

5 +
(

∓
√

−7
)

)

2 · 2

=
−52 +

(

∓
√

−7
)2

4

=
−25 − 7

4
= −8.
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So, ignore the second equation:

−5 ∓
√

−7
2

x + y = 0.

Clearly x = 1, y =
5 ±

√
−7

2
works. Thus:

◦ xxx± =





1

5 ±
√

−7
2



 is an eigenvector of B associated with the eigenvalue

λ =
9 ±

√
−7

2
.

Diagonalization result. B =

[

2 1
−8 7

]

is diagonalized as follows:

Q−1BQ =









9 +
√

−7
2

0

0
9 −

√
−7

2









, where Q =









1 1

5 +
√

−7
2

5 −
√

−7
2









.

Exercise 8. Find the characteristic polynonmial, the eigenvalues, and then
eigenvectors associated with each of the eigenvalues. Then diagonalize the matrix.

(1) A =

[

3 3
4 1

]

. (2) A =

[

1 −1
13 6

]

.

(3) A =

[√
3 1

1 2
√

3

]

. (4) A =







1+
√

−3

2

3−
√

−3

2

3−
√

−3

2

1+
√

−3

2






.

(5) A =











−α5 − 1 −α2 +
1 −

√
−7

2α2

−α2 +
1 −

√
−7

2α2

3 −
√

−7
2











, where

α = cos
2π

7
+

√
−1 sin

2π

7
. Note: α7 = 1, α4 + α2 + α =

−1 +
√

−7
2

.
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• Answers to Exercise problems.

◦ Exercise 1 answers
(

page 1
)

.

(1) 7 and −4. (2) 2 +
√

3 and 2 −
√

3 .

(3)
7 ± 5

2
.

(

7

2
± 5

2
is also valid.

)

◦ Exercise 2 answers
(

page 4
)

.

(1) False. (2) False. (3) True.

◦ Exercise 3 answers
(

page 4
)

.

(1) ±3. (2) −1 ∓
√

6 . (3) −4 ± 2
√

10 .

◦ Exercise 4 answers
(

page 5
)

.

(1) 0. (2) ±3a. (3) ∓5a. (4) a2. (5) −a2.

◦ Exercise 5 answers
(

page 5
)

.

(1) −1. (2) − 7

2
. (3) −25.

◦ Exercise 6 answers
(

page 5
)

.

(1) ac ± ad. (2) ac ∓ ad. (3) ±bc + bd. (4) ∓bc − bd.

(5a) ac ± ad ± bc + bd. (5b) a2 ± 2ab + b2.

(6a) ac ∓ ad ± bc − bd. (6b) a2 − b2.

(7a) ±ac ± ad ± bc ± bd. (7b) ±a2 ± 2ab ± b2.

(8a) ±ac ± ad ∓ bc ∓ bd. (8b) ±a2 ∓ b2.

(9) 1 − b2 + 2bc − c2.

(10) a4 + b4 + c4 + d4 − 2a2b2 − 2a2c2 − 2a2d2 − 2b2c2 − 2b2d2 − 2c2d2 ± 8abcd.
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◦ Exercise 7 answers
(

page 7
)

.

Proof. First divide the both sides of

ax2 + bx + c = 0

by a
(

we are able to do so by virtue of our assumption a 6= 0
)

:

x2 +
b

a
x +

c

a
= 0.

Shift the term:

x2 +
b

a
x = − c

a
.

Add
b2

4a2
to the both sides:

x2 +
b

a
x +

b2

4a2
= − c

a
+

b2

4a2
.

Factor the left-hand side, while simplify the right-hand side:

(

x +
b

2a

)2

=
b2 − 4ac

4a2
.

Hence x +
b

2a
equals the square-root of the right-hand side:

x +
b

2a
= ±

√
b2 − 4ac

2a
.

Finally, subtract
b

2a
from the both sides:

x = − b

2a
±

√
b2 − 4ac

2a

=
−b ±

√
b2 − 4ac

2a
. �
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◦ Exercise 8 answers
(

page 14
)

.

(1) χA

(

λ
)

= λ2 − 4λ − 9. λ = 2 ±
√

13 . xxx =

[

3

−1 ±
√

13

]

.

Q−1AQ =





2 +
√

13 0

0 2 −
√

13



, where Q =





3 3

−1 +
√

13 −1 −
√

13



.

(2) χA

(

λ
)

= λ2 − 7λ + 19. λ =
7 ± 3

√
−3

2
. xxx =





1

−5 ∓ 3
√

−3
2



.

Q−1AQ =











7 + 3
√

−3
2

0

0
7 − 3

√
−3

2











, where

Q =









1 1

−5 − 3
√

−3
2

−5 + 3
√

−3
2









.

(3) χA

(

λ
)

= λ2−3
√

3 λ+5. λ =
3
√

3 ±
√

7

2
. xxx =





1√
3 ±

√
7

2



.

Q−1AQ =











3
√

3 +
√

7

2
0

0
3
√

3 −
√

7

2











, where

Q =









1 1

√
3 +

√
7

2

√
3 −

√
7

2









.
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(4) χA

(

λ
)

= λ2 −
(

1 +
√

−3
)

λ +
(

−2 + 2
√

−3
)

. λ = 2, −1 +
√

−3 .

xxx =

[

1
1

]

is an eigenvector associated with λ = 2.

xxx =

[

1
−1

]

is an eigenvector associated with λ = −1 +
√

−3 .

Q−1AQ =

[

2 0

0 −1 +
√

−3

]

, where Q =

[

1 1

1 −1

]

.

(5) χA

(

λ
)

= λ2 +
(

α + α2 + α4 + α5

)

λ −
(

1 + α4

)(

1 + α3

)(

α + α2 + α4

)

.

The eigenvalues of A:

λ = 1 + α4, −
(

1 + α3

)(

α + α2 + α4

)

.

xxx =

[

1
−α5

]

is an eigenvector associated with λ = 1 + α4,

xxx =

[

α5

1

]

is an eigenvector associated with λ = −
(

1 + α3

)(

α + α2 + α4

)

.

Q−1AQ =





1 + α4 0

0 −
(

1 + α3

)(

α + α2 + α4

)



, where Q =

[

1 α5

−α5 1

]

.
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