# Math 290 ELEMENTARY LINEAR ALGEBRA REVIEW OF LECTURES - XVI 

November 8 (Wed), 2017
Instructor: Yasuyuki Kachi
Line \#: 25751.
Let's start with an example.

## Example 5.

Let's consider

$$
A=\left[\begin{array}{cc}
-2 & -14 \\
3 & 11
\end{array}\right]
$$

The following may be out of the blue, but bear with me. This matrix $A$ is clearly not a diagonal matrix. However, form $P A Q$ as follows:


Here the choices of $P$ and $Q$ are deliberate. Don't ask me what prompted me to make these choices for $P$ and $Q$. All I can say right now is, with these choices of $P$ and $Q$, once we calculate this $P A Q$, it will become

$$
P A Q=\left[\begin{array}{ll}
4 & 0 \\
0 & 5
\end{array}\right]
$$

Is there anything that stands out? Yes, this last matrix is a diagonal matrix .

But that's not the end of it. $P$ and $Q$ are actually inverses of each other . Indeed, let's form $P Q$ :


Once you calculate this, you will end up getting

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
$$

the identity matrix. So in other words, $Q=P^{-1}$. So, $P A Q$ is $P A P^{-1}$. Now, this way we arrive at the following:

$$
\begin{aligned}
A= & {\left[\begin{array}{cc}
-2 & -14 \\
3 & 11
\end{array}\right], \quad P=\left[\begin{array}{ll}
1 & 2 \\
3 & 7
\end{array}\right] } \\
& \Longrightarrow \quad P A P^{-1}=\left[\begin{array}{ll}
4 & 0 \\
0 & 5
\end{array}\right] .
\end{aligned}
$$

So again, $A$ is not diagonal but $P A P^{-1}$ is.

In the above, I didn't explain how I came up with $P$ and $Q$, where one is the inverse of the other. Let me oblige. First, breaking news:

Fact.

$$
A=\left[\begin{array}{cc}
-2 & -14 \\
3 & 11
\end{array}\right]
$$

(the same $A$ as above) has 4 and 5 as its eigenvalue. This is due to the fact that 4 and 5 are the two diagonal entries of the 'diagonalized' matrix $P A P^{-1}$.

An obvious question here is "how come?" Can anyone explain? Believe me or not, the theory that we have been thoroughly developing is tailor-made to this situation. We have been patiently building up some foundations, and this is the place to readily apply them. Okay, here is the clue:

## Clue. Agree

$$
\begin{aligned}
P(\lambda I-A) P^{-1} & =\lambda I-P A P^{-1} \\
& =\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]-\left[\begin{array}{ll}
4 & 0 \\
0 & 5
\end{array}\right]=\left[\begin{array}{cc}
\lambda-4 & 0 \\
0 & \lambda-5
\end{array}\right] .
\end{aligned}
$$

In short, $\quad P(\lambda I-A) P^{-1}=\left[\begin{array}{cc}\lambda-4 & 0 \\ 0 & \lambda-5\end{array}\right] . \quad$ Let's take the determinant:

$$
\operatorname{det}\left(P(\lambda I-A) P^{-1}\right)=\left|\begin{array}{cc}
\lambda-4 & 0  \tag{@}\\
0 & \lambda-5
\end{array}\right|
$$

1. First, the right-hand side of (@) is clearly $(\lambda-4)(\lambda-5)$.
2. Second, by Product Formula ("Review of Lectures - IV"), the left-hand side of (@) is broken up as

$$
\begin{aligned}
&(\operatorname{det} P)(\operatorname{det}(\lambda I-A))\left(\operatorname{det} P^{-1}\right)=(\operatorname{det} P)(\operatorname{det}(\lambda I-A)) \frac{1}{\operatorname{det} P} \\
&=(\operatorname{det} P) \frac{1}{\operatorname{det} P}(\operatorname{det}(\lambda I-A)) \\
& {\left[\begin{array}{lll} 
& \text { here } \operatorname{det}(\lambda I-A) \quad \text { and } \frac{1}{\operatorname{det} P} \quad \text { are } \\
& \text { interchangeable because both are scalars }
\end{array}\right] } \\
&=\operatorname{det}(\lambda I-A) \\
&=\chi_{A}(\lambda)(\text { the characteristic polynomial } \\
&\text { of } A) .
\end{aligned}
$$

From 1. and 2. above, we conclude

$$
\chi_{A}(\lambda)=(\lambda-4)(\lambda-5) .
$$

- Let me recite 'Fact' below:

Fact.

$$
A=\left[\begin{array}{cc}
-2 & -14 \\
3 & 11
\end{array}\right]
$$

(the same $A$ as above) has 4 and 5 as its eigenvalue. This is due to the fact 4 and 5 are the two diagonal entries of the 'diagonalized' matrix $P A P^{-1}$ :

$$
P A P^{-1}=\left[\begin{array}{ll}
4 & 0 \\
0 & 5
\end{array}\right] .
$$

Next, here is another fact:

Fact 2. In

$$
Q=P^{-1}=\left[\begin{array}{cc}
7 & -2 \\
-3 & 1
\end{array}\right]
$$

the two columns are the so-called "eigenvectors", namely, the vector $\boldsymbol{x}$ satisfying $A x=\lambda x$ where $\lambda$ is one of the eigenvalues of $A$.

- $\left[\begin{array}{c}7 \\ -3\end{array}\right]$ is an eigenvector of $A$ associated with the eigenvalue $\lambda=4$.
- $\left[\begin{array}{c}-2 \\ 1\end{array}\right]$ is an eigenvector of $A$ associated with the eigenvalue $\lambda=5$.
- Let's verify these:

$$
\begin{aligned}
{\left[\begin{array}{cc}
-2 & -14 \\
3 & 11
\end{array}\right]\left[\begin{array}{c}
7 \\
-3
\end{array}\right] } & =\left[\begin{array}{r}
(-2) \cdot 7+(-14) \cdot(-3) \\
3 \cdot 7+11 \cdot(-3)
\end{array}\right] \\
& =\left[\begin{array}{c}
28 \\
-12
\end{array}\right]=4\left[\begin{array}{c}
7 \\
-3
\end{array}\right] \\
{\left[\begin{array}{cc}
-2 & -14 \\
3 & 11
\end{array}\right]\left[\begin{array}{c}
-2 \\
1
\end{array}\right] } & =\left[\begin{array}{c}
(-2) \cdot(-2)+(-14) \cdot 1 \\
3 \cdot(-2)+11 \cdot 1
\end{array}\right] \\
& =\left[\begin{array}{c}
-10 \\
5
\end{array}\right]=5\left[\begin{array}{c}
-2 \\
1
\end{array}\right] .
\end{aligned}
$$

- But the real question is why the matrix $Q$, whose columns are eigenvectors of $A$, has the ability to make $Q^{-1} A Q\left(=P A P^{-1}\right)$ diagonal.

The answer is very simple. It is as follows. For simplicity, let's denote

$$
\boldsymbol{x}=\left[\begin{array}{c}
7 \\
-3
\end{array}\right], \quad \boldsymbol{y}=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

So

- $\boldsymbol{x}$ is an eigenvector of $A$ associated with the eigenvalue $\lambda=4$,
- $\boldsymbol{y}$ is an eigenvector of $A$ associated with the eigenvalue $\lambda=5$, and moreover $\quad Q=\left[\begin{array}{ll}x & y\end{array}\right]$. Then

$$
\begin{aligned}
A Q & =A\left[\begin{array}{ll}
x & \boldsymbol{y}
\end{array}\right] \\
& =\left[\begin{array}{ll}
A \boldsymbol{x} & A \boldsymbol{y}
\end{array}\right] \\
& =\left[\begin{array}{ll}
4 \boldsymbol{x} & 5 \boldsymbol{y}
\end{array}\right]
\end{aligned}
$$

Here, the matrix $\left[\begin{array}{cc}4 \boldsymbol{x} & 5 \boldsymbol{y}\end{array}\right]$ is actually rewritten as

$$
\left[\begin{array}{ll}
\boldsymbol{x} & \boldsymbol{y}
\end{array}\right]\left[\begin{array}{ll}
4 & 0 \\
0 & 5
\end{array}\right]
$$

(Indeed, physically calculate $\left[\begin{array}{ll}p & q \\ r & s\end{array}\right]\left[\begin{array}{ll}4 & 0 \\ 0 & 5\end{array}\right]$ and $\left[\begin{array}{ll}4 p & 5 q \\ 4 r & 5 s\end{array}\right]$ comes out.)
Here, remember $\quad\left[\begin{array}{ll}x & y\end{array}\right]=Q . \quad$ So, in short,

$$
A Q=Q\left[\begin{array}{ll}
4 & 0 \\
0 & 5
\end{array}\right]
$$

Multiply $Q^{-1}$ from the left to the both sides of this last identity, and we obtain

$$
Q^{-1} A Q=\left[\begin{array}{ll}
4 & 0 \\
0 & 5
\end{array}\right]
$$

- We can now extrapolate the above picture, and establish a method for diagonalizing a given matrix $A$.


## Recipé to diagonalize a given matrix.

Let

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Suppose $A$ has two distinct eigenvalues

$$
\chi_{A}(\lambda)=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \quad\left(\lambda_{1} \neq \lambda_{2}\right)
$$

Suppose

- $\boldsymbol{x}=\left[\begin{array}{c}p \\ r\end{array}\right]$ is an eigenvector of $A$ associated with the eigenvalue $\lambda=\lambda_{1}$.
- $\boldsymbol{y}=\left[\begin{array}{l}q \\ s\end{array}\right] \quad$ is an eigenvector of $A$ associated with the eigenvalue $\lambda=\lambda_{2}$.

Then set

$$
Q=\left[\begin{array}{ll}
\boldsymbol{x} & \boldsymbol{y}
\end{array}\right]=\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right] .
$$

Then

$$
Q^{-1} A Q=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]
$$

In other words, set $P=Q^{-1}, \quad$ and

$$
P A P^{-1}=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] .
$$

Example 6. Let's diagonalize the matrix

$$
A=\left[\begin{array}{cc}
-4 & 6 \\
7 & -5
\end{array}\right]
$$

Step 1. Find the eigenvalues. This is routine:

$$
\begin{aligned}
\chi_{A}(\lambda) & =\operatorname{det}(\lambda I-A) \\
& =\left|\begin{array}{cc}
\lambda+4 & -6 \\
-7 & \lambda+5
\end{array}\right| \\
& =(\lambda+4)(\lambda+5)-(-6) \cdot(-7) \\
& =\lambda^{2}+9 \lambda+20-42 \\
& =\lambda^{2}+9 \lambda-22 \\
& =(\lambda-2)(\lambda+11)
\end{aligned}
$$

So, the eigenvalues of $A$ are

$$
\lambda=2 \quad \text { and } \quad \lambda=-11
$$

Step 2. Find eigenvectors of $A$ associated with each of the two eigenvalues of $A$ (Step 2a and Step 2b below).

Step 2a. Find an eigenvector of $A$ associated with $\lambda=2$.
Since $\quad A=\left[\begin{array}{cc}-4 & 6 \\ 7 & -5\end{array}\right], \quad$ the equation $\quad A x=2 x \quad$ is

$$
\left[\begin{array}{cc}
-4 & 6  \tag{@}\\
7 & -5
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=2\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

That is,

$$
\left[\begin{array}{c}
-4 x+6 y \\
7 x-5 y
\end{array}\right]=\left[\begin{array}{l}
2 x \\
2 y
\end{array}\right]
$$

That is,

$$
\left\{\begin{aligned}
-4 x+6 y & =2 x \\
7 x-5 y & =2 y
\end{aligned}\right.
$$

Shift the terms:

$$
\left\{\begin{aligned}
-6 x+6 y & =0 \\
7 x-7 y & =0
\end{aligned}\right.
$$

So two essentially identical equations came out. These equations are the same as

$$
x-y=0
$$

Clearly

$$
x=1, y=1
$$

works. Thus:

- $\boldsymbol{x}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is an eigenvector of $A$ associated with the eigenvalue $\lambda=2$.

Step 2b. Find an eigenvector of $A$ associated with $\lambda=-11$.
Since $\quad A=\left[\begin{array}{cc}-4 & 6 \\ 7 & -5\end{array}\right], \quad$ the equation $\quad A x=-11 x \quad$ is

$$
\left[\begin{array}{cc}
-4 & 6  \tag{@}\\
7 & -5
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=-11\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

That is,

$$
\left[\begin{array}{r}
-4 x+6 y \\
7 x-5 y
\end{array}\right]=\left[\begin{array}{l}
-11 x \\
-11 y
\end{array}\right] .
$$

That is,

$$
\left\{\begin{aligned}
-4 x+6 y & =-11 x \\
7 x-5 y & =-11 y
\end{aligned}\right.
$$

Shift the terms:

$$
\left\{\begin{array}{l}
7 x+6 y=0 \\
7 x+6 y=0
\end{array}\right.
$$

So two identical equations came out. Delete one of them:

$$
7 x+6 y=0
$$

Clearly

$$
x=6, \quad y=-7
$$

works. Thus:

- $\boldsymbol{y}=\left[\begin{array}{c}6 \\ -7\end{array}\right]$ is an eigenvector of $A$ associated with the eigenvalue $\lambda=-11$.

Step 3. Form

$$
Q=\left[\begin{array}{ll}
x & y
\end{array}\right]
$$

using $\boldsymbol{x}$ from Step 2a, and $\boldsymbol{y}$ from Step 2 b :

$$
Q=\left[\begin{array}{cc}
1 & 6 \\
1 & -7
\end{array}\right]
$$

Answer. $\quad A=\left[\begin{array}{cc}-4 & 6 \\ 7 & -5\end{array}\right] \quad$ is diagonalized as follows:

$$
Q^{-1} A Q=\left[\begin{array}{cc}
2 & 0 \\
0 & -11
\end{array}\right], \quad \text { where } \quad Q=\left[\begin{array}{cc}
1 & 6 \\
1 & -7
\end{array}\right]
$$

- Just in case, let's find $Q^{-1}=P$. First, note

$$
\begin{aligned}
\operatorname{det} Q & =\left|\begin{array}{cc}
1 & 6 \\
1 & -7
\end{array}\right| \\
& =1 \cdot(-7)-6 \cdot 1=-13 .
\end{aligned}
$$

So

$$
\begin{aligned}
P=\left[\begin{array}{cc}
1 & 6 \\
1 & -7
\end{array}\right]^{-1} & =\frac{1}{\operatorname{det} Q}\left[\begin{array}{cc}
-7 & -6 \\
-1 & 1
\end{array}\right] \\
& =\frac{1}{-13}\left[\begin{array}{cc}
-7 & -6 \\
-1 & 1
\end{array}\right] \\
& =\frac{1}{13}\left[\begin{array}{cc}
7 & 6 \\
1 & -1
\end{array}\right] .
\end{aligned}
$$

Accordingly, we may paraphrase our answer as follows:

Alternative Answer. $\quad A=\left[\begin{array}{cc}-4 & 6 \\ 7 & -5\end{array}\right] \quad$ is diagonalized as follows:

$$
P A P^{-1}=\left[\begin{array}{cc}
2 & 0 \\
0 & -11
\end{array}\right], \quad \text { where } \quad P=\frac{1}{13}\left[\begin{array}{cc}
7 & 6 \\
1 & -1
\end{array}\right] .
$$

Note. You may instead throw $P=\left[\begin{array}{cc}7 & 6 \\ 1 & -1\end{array}\right]$ in "Alternative Answer". This is acceptable, as long as you are aware of the fact that this $P$ and $Q$ above are no longer inverses of each other. Indeed, when you replace $P$ with a non-zero scalar multiple of $P$, it does not affect $P A P^{-1}$.

