
Math 290 ELEMENTARY LINEAR ALGEBRA

REVIEW OF LECTURES – X

September 25 (Mon), 2017

Instructor: Yasuyuki Kachi

Line #: 25751.

§10. Matrices in arbitrary size.

A quick run down:

(0) Brute-force attempt to solve systems of linear equations quickly gives way to
building up a matrix theory. Determinants lie at the heart of it. Only with a firm
grasp of matrices and determinants will we have a shot at getting a hold of systems
of linear equations. We will be faithful to this scope for the entire semester.

(1) We defined the 2 × 2, and the 3 × 3, determinants. The 3 × 3 determinant
turns out to be made of 2 × 2 determinants

(

‘co-factor expansion’
)

.

(2)
(

just a heads-up
)

Co-factor expansions exist for larger size determinants,
namely: the 4 × 4 determinant is made of 3 × 3 determinants — more gener-
ally, the n × n determinant is made of

(

n−1
)

×
(

n−1
)

determinants. Here, the
definition of the n × n determinant for n≥ 4 pending.

(3) We have defined multiplication AB of two 2 × 2 matrices A, B. We have
proved det

(

AB
)

=
(

detA
)(

detB
) (

the product formula
)

. It illustrates that

the notion of determinants and the notion of matrix multiplication totally go together.

(4) We have defined multiplication AB of two 3 × 3 matrices A, B. The same
for larger size matrices still pending.

(5)
(

also a heads-up
)

The same product formula holds true when A and B are
both n × n. Despite its innocuous looking when written in one line, the formula is
non-trivial: The “spelt-out version” of it for n= 4 already takes up an entire page
(

“Review of Lectures – VI”, page 8
)

. The number of terms that show up on each

side of the formula
(

after expanding all the parentheses
)

grows exponentially as n

grows. Before long it goes above the computer’s capacity. Proving it in an ex machina

way is feasible within the scope of Math 290. We shoot for it. More generally, you
are going to learn things which your computer cannot replace. In math, theories

supersede mindless calculations
(

mathematicians’ job is to discover such theories
)

.
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(6) Matrix arithmetic, mainly for 2 × 2 case.

◦ Inverse A−1 of a matrix A
(

so far 2 × 2 and 3 × 3
)

.

◦ The identity matrix I
(

so far 2 × 2 and 3 × 3
)

.

◦ Parallelism between the role of the matrix I and the role of the number 1.

◦ Matrix addition and subtraction
(

so far 2 × 2
)

.

◦ Associative and distributive laws. Powers Ak
(

so far 2 × 2
)

.

(7)
(

just a sneak preview
)

Eigenvalues and the characteristic polynomial of a

matrix A
(

so far 2 × 2
)

. This topic is going to be one of the highlights of the
second-half of the semester.

(8) Gaussian elimination method. How to frame it in the language of matrices.
Reduced row echelon form. How this has a bearing on the inverse of a matrix.

• That’s what we have covered so far. We want to push this direction further, as the
Break

(

the end of the first-half
)

is sneaking up on us as we speak. With that in mind,
I want to announce one thing: I am going to change the narrative somewhat. Thus
far our approach has been heuristic: When I introduce something, I always stop and
tell you why we do this, why we do that, offering the raison d’être of every concept,
that this is not some useless junk, but it is relevant for such and such reason. All that
despite the fact that once armed with a deeper knowledge you get to see all of that
(

which is going to happen before the semester ends, by design
)

so it will ultimately
become redundant. In the future, I will gear more towards helping you acclimate
to the style how mathematicians articulate things. In any professional mathematical
texts

(

that includes math textbooks for graduate courses
)

, the author follows a well-
established writing style, consistent with the standards of rigor in research math. It
is more-or-less as follows:

Definition(s) =⇒ Theorem(s)
(

and formula(s)
)

=⇒ Proof(s)

=⇒ Another definition(s) =⇒ Theorem(s)
(

and formula(s)
)

=⇒ Proof(s)

=⇒ Occasionally examples.

I’m going to incorporate this very format, to a moderate extent. The reason why I do
that is firstly, it is efficient . In the first nine lectures, I have sacrificed efficiency. I did
that deliberately. As a side-track, we professional mathematicians too need to hear
some ‘spiel’ when we attend someone’s

(

our peers’
)

professional seminars and collo-
quium lectures, which are typically about new theories the speaker has just unleashed.
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And ‘spiel’ is the part we get the most out of it — remember, hundred different
mathematicians hold hundred different areas of expertise. The speaker will then go
on to disclose how everything falls into place so we, the audience, can trace it if
we care enough — which we seldom do due to the slim odds a connection exists
between the talk and our own research. But we go out and do it when our gut says
so, and it sometimes pays off if you are lucky, namely, it leads to a new discovery.
That’s one time-tested way to engineer a new theory. Then you return a favor
to the mathematicians’ community by giving a presentation yourself. Within our
professional circle, the word ‘math’ means this very process, a mass undertaking, a
succession of submissions of new math theories by experts, a collective endeavor to
upgrade human knowledge in cutting-edge math.

Let me dwell on this peer presentation thing just a tiny bit more
(

bear with me
)

beause it’s finally relevant to what I was saying earlier about this class: All things
considered, the most effective approach, if you are the speaker, is to assume that the
audience is “infinitely ignorant, and infinitely intelligent”. As a lecture-giver, you
must fill in the “infinite ignorance” part of the audience. I know that’s a ‘platonic
ideal ’, but trust me, it is viable for undergraduate classes, like this one

(

Math 290
)

,
save that you are not infinitely ignorant: You are already equipped with some firm
background knowledge on the prerequisite math. So, where am I getting at? Yes, I
will assume

(

as I always have
)

you guys are infinitely intelligent too. The allotted
number of hours is limited, and I want to share a chunk of knowledge. So I have
to strike a balance between ‘spiel ’ and ‘efficiency ’. But no worries, it’s not like this
class suddenly becomes ‘esoteric’

(

←− meaning ‘as clear as mud’
)

. Let me put it
nicely as follows: ‘The slope we are climbing gets steeper from now on’. So, here
we go, let me throw one definition, where the narrative is very characteristic of the
aforementioned “mathematicians’ writing style”:

Definition (a matrix). A matrix is

A =









a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn









,

where aij are scalars
(

= real numbers
)

. Each individual scalar aij is called an

entry of the matrix A. When we need to emphasize the location of aij , we say

that aij is the
(

i, j
)

-th entry of the matrix A, the i-th from the top and the j-th
from the left.
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• In the above, the number of rows is m and the number of columns is n. We

then call the matrix to have size m × n .

• The size description should always be

(

the number of rows
)

×
(

the number of columns
)

.

• Always, the i-th row means the i-th row from the top , and the j-th column
means the j-th column from the left .

• It is common to omit the bracket
[ ]

on a 1× 1 matrix. We may write

a, instead of
[

a
]

.

— How was that? You might have felt that my sound and tone got drier , if ever
so slightly. I’m going to maintain this style. So I want you to hang on every word I
say. Trust me, you’ll get used to this quickly.

Example 1. We may write a general 2 × 2 matrix as

[

a11 a12
a21 a22

]

, or

[

a1 a2
b1 b2

]

, or

[

a b

c d

]

.

We may write a general 3 × 3 matrix as





a11 a12 a13
a21 a22 a23
a31 a32 a33



, or





a1 a2 a3
b1 b2 b3
c1 c2 c3



, or





a b c

p q r

x y z



.

We may write a general 2 × 4 matrix as

[

a11 a12 a13 a14
a21 a22 a23 a24

]

, or

[

a1 a2 a3 a4
b1 b2 b3 b4

]

, or

[

a b c d

p q r s

]

.

Exercise 1. Write out each of the following:

(1) The general 4 × 4 matrix. (2) The general 2 × 5 matrix.

(3) The general 3 × 6 matrix.
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• Identification of two matrices.

Consider two matrices

A =









a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn









and B =









b11 a12 · · · a1ℓ
b21 a22 · · · a2ℓ
...

...
. . .

...
bk1 ak2 · · · akℓ









.

As you can see,

A is in size m × n, whereas B is in size k × ℓ.

Now, A and B are equal , when their size descriptions match, namely, m = k,

and n = ℓ, and moreover their corresponding entries match, namely,

aij = bij holds for each i, j .

In this situation, we write

A = B .

If A and B are not equal, then we write

A 6= B .

Example 2.

[

1 0
0 0

]

6=

[

0 0
0 1

]

,

[

0 0
0 0

]

6=

[

0 0 0
0 0 0

]

,

[

1 1 1
1 1 1

]

6=





1 1
1 1
1 1



 .

— So far so good?

• Row vectors, Column vectors.

A matrix of size 1 × n is called a row vector
(

of length n
)

. A matrix

of size m × 1 is called a column vector
(

of length m
)

.
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Example 3. A
(

general
)

row vector of length 2 is
[

a b
]

, or
[

a1 a2

]

.

A
(

general
)

column vector of length 2 is

[

a

b

]

, or

[

a1
a2

]

.

A
(

general
)

row vector of length 3 is
[

a b c
]

, or
[

a1 a2 a3

]

.

A
(

general
)

column vector of length 3 is





a

b

c



 , or





a1
a2
a3



 .

Exercise 2. Write out each of the following:

(1) A general row vector of length 4.

(2) A general column vector of length 4.

• Matrix addition.

For two matrices A and B which are in the same size , their sum A + B is

defined. A + B is a matrix having the same size as A and B.

Definition. Let

A =









a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn









, and B =









b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bm1 bm2 · · · bmn









.

Note that A and B are both in size m × n. We define

A + B =









a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 · · · amn + bmn









.

6



• We may paraphrase the definition as









a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn









+









b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bm1 bm2 · · · bmn









=









a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 · · · amn + bmn









.

In short, the matrix addition is defined as an “entrywise” addition .

• If A and B are not in the same size, then A + B is undefined .

Example 4. (1) For A =

[

1 2
2 1

]

, B =

[

−3 −2
4 2

]

, we have

A + B =

[

1 +
(

− 3
)

2 +
(

− 2
)

2 + 4 1 + 2

]

=

[

−2 0
6 3

]

.

(2) For

C =





0 3 −1 2
−2 4 −6 3
1 1 1 0



 , D =





2 2 0 1
1 −3 1 0
0 1 2 5



 ,

we have

C + D =





0 + 2 3 + 2 −1 + 0 2 + 1
−2 + 1 4 +

(

−3
)

−6 + 1 3 + 0
1 + 0 1 + 1 1 + 2 0 + 5





=





2 5 −1 3
−1 1 −5 3
1 2 3 5



 .

(3) For uuu =
[

3 3 2
]

, vvv =
[

−1 −2 0
]

, we have

uuu + vvv =
[

3 +
(

−1
)

3 +
(

−2
)

2 + 0
]

=
[

2 1 2
]

.
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(4) For E =

[

0 0 1
2 0 2

]

, F =

[

1 1
1 0

]

, E + F is undefined.

(5) For G =





0 4
0 1
1 2



, H =





0 8 6
−1 0 2
0 0 3



, G + H is undefined.

Exercise 3. Calculate, if feasible.

(1) A + B, where A =

[

1 3 5 7
2 4 6 8

]

, B =

[

−2 −4 −6 −8
−1 −3 −5 −7

]

.

(2)







−1 −1 −1 −1
−1 −1 −1 −1
−1 −1 −1 −1
−1 −1 −1 −1






+







1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1






.

(3) uuu + vvv, where uuu =







1
2
4
8






, vvv =







1
3
9
27






.

(4)
[

1 3 6 10 15
]

+
[

3 6 10 15 21
]

.

(5) A + B, where A =

[

1 1
0 1

]

, B =





1 1 1
0 1 1
0 0 1



.

(6)
[

0 0
]

+
[

0 0 0 0
]

.

(7)





1
1
1



 +







2
2
2
2






.
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• Scalar multiplication. For a matrix A and a scalar s, sA is defined.

Definition. Let

A =









a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn









.

Let s be a scalar. We define

sA =









s a11 s a12 · · · s a1n
s a21 s a22 · · · s a2n
...

...
. . .

...
s am1 s am2 · · · s amn









.

• We may paraphrase the definition as

s









a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn









=









s a11 s a12 · · · s a1n
s a21 s a22 · · · s a2n
...

...
. . .

...
s am1 s am2 · · · s amn









.

In short, a scalar multiplication of a matrix is defined as a multiplication of “the

same scalar to each entry” .

• In particular, we may define
(

− 1
)

A for a matrix A. We often write it as −A:

(

−1
)

A = −A .

That is, for A =









a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn









, we have

−A =









−a11 −a12 · · · −a1n
−a21 −a22 · · · −a2n
...

...
. . .

...
−am1 −am2 · · · −amn









.
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Exercise 4. Calculate.

(1) 2A, where A =

[

1 2 1 2
0 0 0 0

]

.

(2) −4A, where A =





3 2
1 1
2 4



.

(3) −A, where A =





−1 −2 −3
−4 −5 −6
−7 −8 −9



.

(4) 10uuu, where uuu =
[

12 12 12 12
]

.

• A linear combination of matrices.

For two matrices A and B which are in the same size, and for two scalars s and
t, the linear combination

sA + tB

is just the sum of sA and t B.

• As a special case, we may consider 1 ·A +
(

−1
)

·B. We may write it as A − B:

A − B = 1 · A +
(

−1
)

· B .

• It makes sense to more generally consider the linear combination

s1A1 + s2A2 + ··· + srAr

for matrices A1, A2, · · · , Ar in the same size, and for scalars s1, s2, · · · , sr.
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Example 5. For

A =

[

2 1 1
−1 −1 4

]

, and B =

[

2 −3 4
−3 1 −2

]

,

we have

2A =

[

2 · 2 2 · 1 2 · 1
2 ·

(

− 1
)

2 ·
(

− 1
)

2 · 4

]

=

[

4 2 2
−2 −2 8

]

,

−B =

[

−2 3 −4
3 −1 2

]

, and

2A − B =
(

2A
)

+
(

− B
)

=

[

4 2 2
−2 −2 4

]

+

[

−2 3 −4
3 −1 2

]

=

[

2 5 −2
1 −3 6

]

.

Exercise 5. (1) For A =





6 −1
2 4
−3 5



 , B =





1 4
−1 5
1 10



 , find A − B.

(2) For A =





4 1 −6
0 3 2
−3 1 1



 , B =





1 0 5
−4 6 1
−3 4 6



 , find 5A + 2B.

(3) For uuu =





1
2
3



 , vvv =





2
2
2



 , www =





0
1
−1



 , find 3uuu + 4vvv + 5www.

• Matrix multiplication.

For two matrices A and B, their product AB is defined, whenever the number of

columns of A equals the number of rows of B. AB is a matrix whose number of
rows equals that of A, and whose number of columns equals that of B.
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Definition. Let

A =









a11 a12 · · · a1r
a21 a22 · · · a2r
...

...
. . .

...
am1 am2 · · · amr









, and B =









b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
br1 br2 · · · brn









.

Note that r is the number of columns for A, as well as the number of rows for B

at the same time. So

the number of columns for A = the number of rows for B.

Then we define their product AB as follows:

AB =









c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
cm1 cm2 · · · cmn









is a matrix having size m × n, and having entries cij which are decided by the

following rule:

Rule. To find the
(

i, j
)

-th entry cij of the product AB, single out the row i

from the matrix A, and the column j from the matrix B:

A =

















a11 a12 · · · a1r
· · ·· · ·· · ·

ai1 ai2 · · · air

· · ·· · ·· · ·
am1 am2 · · · amr

















and B =















b11 · · · b1j · · · b1n

b21 · · · b2j · · · b1n

...
...

...

br1 · · · brj · · · brn















, .

Call them aaai and bbbj , respectively:

aaai =
[

ai1 ai2 · · · air

]

, and bbbj =









b1j
b2j
...
brj









.
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Multiply the corresponding entries for the row aaai and the column bbbj together,

then add up the resulting products, and that’s cij :

ai1 b1j + ai2b2j + · · · + airbrj = cij .

This cij will sit at the
(

i, j
)

-th entry of the product AB.

• Consider the special case when B is a column vector bbb:

A =









a11 a12 · · · a1r
a21 a22 · · · a2r
...

...
. . .

...
am1 am2 · · · amr









, and bbb =









b1
b2
...
br









.

Then

Abbb =









a11 a12 · · · a1r
a21 a22 · · · a2r
...

...
. . .

...
am1 am2 · · · amr

















b1
b2
...
br









=









a11b1 + a12b2 + · · · + a1rbr
a21b1 + a22b2 + · · · + a2rbr

...
am1b1 + am2b2 + · · · + amrbr









.

• Note. The same can also be written as

Abbb = b1









a11
a21
...

am1









+ b2









a12
a22
...

am2









+ · · · + br









a1r
a2r
...

amr









.

• Similarly, consider the special case when A is a row vector aaa:

aaa =
[

a1 a2 · · · ar

]

, and B =









b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
br1 br2 · · · brn









.
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Then

aaaB =
[

a1 a2 · · · ar

]









b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
br1 br2 · · · brn









=
[

a1 b11 + a2 b21 + · · · + ar br1 a1 b12 + a2 b22 + · · · + ar br2

· · · a1 b1n + a2 b2n + · · · + ar brn

]

.

• Note. The same can also be written as

aaaB = a1

[

b11 b12 · · · b1n

]

+ a2

[

b21 b22 · · · b2n

]

+ · · · · · ·

+ ar

[

br1 br2 · · · brn

]

.

• As we have already seen in the case A and B are both 2× 2,
(

and also the case

A and B are both 3 × 3
)

, AB and BA need not be equal , even if both AB

and BA are defined and are in the same size.

Example 6. For A =
[

3 2 1
]

, B =





2
3
0



 , we have

AB =
[

3 2 1
]





2
3
0





= 3 · 2 + 2 · 3 + 1 · 0

= 12,

whereas
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BA =





2
3
0





[

3 2 1
]

=





2 · 3 2 · 2 2 · 1
3 · 3 3 · 2 3 · 1
0 · 3 0 · 2 0 · 1





=





6 4 2
9 6 3
0 0 0



 .

• As Example 6 shows, AB and BA need not have the same size , even if both

AB and BA are defined.

Example 7. For A =





−1 3
4 −5
0 2



 , B =

[

1 2
0 7

]

, we have

AB =





−1 3
4 −5
0 2





[

1 2
0 7

]

=





(

− 1
)

· 1 + 3 · 0
(

− 1
)

· 2 + 3 · 7

4 · 1 +
(

− 5
)

· 0 4 · 2 +
(

− 5
)

· 7
0 · 1 + 2 · 0 0 · 2 + 2 · 7





=





−1 19
4 − 27
0 14



 ,

BA is undefined .

• As Example 7 shows, BA needs not be defined , even if AB is defined.
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Exercise 6. (1) For

A =









5 0 0

0 −8 0

0 0 7









, B =











1

5
0 0

0
−1

8
0

0 0
1

7











,

find AB and BA. If undefined, write undefined.

(2) For

A =







1
−2
3
0






, B =

[

1 4
]

,

find AB and BA. If undefined, write undefined.

(3) For

A =







4 1 2 −3
−1 4 3 2
−2 −3 4 −1
3 −2 1 4






, B =







−4 1 2 −3
−1 −4 3 2
−2 −3 −4 −1
3 −2 1 −4






,

find AB and BA. If undefined, write undefined.

• A matrix partition into columns/rows.

A matrix can be “partitioned” into its columns. If B is a matrix

B =









b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
br1 br2 · · · brn









,

then we may give each column a name
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bbb1 =









b11
b21
...
br1









, bbb2 =









b12
b22
...

br2









, · · · bbbn =









b1n
b2n
...

brn









,

and think of B as
[

bbb1 bbb2 · · · bbbn

]

. We call bbbj the j-th column vector

of B.

Formula 1. Let B =
[

bbb1 bbb2 · · · bbbn

]

be as above. Let A be any

matrix whose number of columns is r. Then

AB =
[

Abbb1 Abbb2 · · · Abbbn

]

.

Example 8.

[

a11 a12 a13
a21 a22 a23

]





b11 b12
b21 b22
b31 b32





=

[

a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32
a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32

]

.

The first column of the resulting matrix is

[

a11 a12 a13
a21 a22 a23

]





b11
b21
b31



 .

The second column of the resulting matrix is

[

a11 a12 a13
a21 a22 a23

]





b12
b22
b32



 .

• Similarly, a matrix can be “partitioned” into its rows. If A is a matrix

A =









a11 a12 · · · a1r
a21 a22 · · · a2r
...

...
. . .

...
am1 am2 · · · amr









,

then we may give each column a name
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aaa1 =
[

a11 a12 · · · a1r

]

,

aaa2 =
[

a21 a22 · · · a2r

]

,

...
...

...
...

aaam =
[

am1 am2 · · · amr

]

,

and think of A as









aaa1
aaa2
...

aaam









. We call aaai the i-th row vector of A.

Formula 2. Let A =









aaa1
aaa2
...

aaam









be as above. Let B be any matrix whose

number of rows is r. Then AB =









aaa1B

aaa2B
...

aaamB









.

Example 9. Look at the same matrix multiplication as in Example 8.

The first row of the resulting matrix is
[

a11 a12 a13

]





b11 b12
b21 b22
b31 b32



 .

The second row of the resulting matrix is
[

a21 a22 a23

]





b11 b12
b21 b22
b31 b32



 .

• Systems of linear equations in matrix form.

Consider the system of linear equations



















a11 x1 + a12 x2 + · · · + a1n xn = b1,

a21 x1 + a22 x2 + · · · + a2n xn = b2,

· · · · · · · · ·

am1x1 + am2x2 + · · · + amnxn = bm
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where aij and bi are scalars
(

constants
)

. The same system can be rewritten as









a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

















x1

x2

...
xn









=









b1
b2
...
bm









.

In other words, let

A =









a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn









, xxx =









x1

x2

...
xn









, bbb =









b1
b2
...
bm









,

and the above is

Axxx = bbb.

• Homogeneous system of linear equations.

Consider the system



















a11 x1 + a12 x2 + · · · + a1n xn = 0,

a21 x1 + a22 x2 + · · · + a2n xn = 0,

· · · · · · · · ·

am1x1 + am2x2 + · · · + amnxn = 0.

Note the right-hand side on each line equals 0. This is called a homogeneous system .
The same system can be rewritten as









a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

















x1

x2

...
xn









=









0
0
...
0









.
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In other words, letting A and xxx be as above, and 000 =









0
0
...
0









, the same system

can be rewritten as

Axxx = 000.

Example 10. The system of linear equations















6 x2 + 4 x3 + 2 x4 = −1,

3 x1 + 3 x2 + 7 x4 = 4,

2 x1 − 3 x3 = 10

is rewritten as




0 6 4 2
3 3 0 7
2 0 −3 0











x1

x2

x3

x4






=





−1
4
10



 .

Exercise 7. Rewrite the system of linear equations


























x1 − x2 − x3 − x4 = − 2,

− x1 + x2 − x3 − x4 = − 2,

− x1 − x2 + x3 − x4 = − 2,

− x1 − x2 − x3 + x4 = − 2.

in the form Axxx = bbb.

Exercise 8. Rewrite the system of linear equations


































4 x1 − 3 x3 + 5 x5 = 0,

2 x1 − 2 x2 + x4 = 0,

x1 + 6 x2 + 8 x3 + x5 = 0,

3 x1 − x2 + 4 x3 − x4 − 7 x5 = 0,

x1 + x2 + x3 + x4 + x5 = 0

in the form Axxx = 000.
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