Math 290 ELEMENTARY LINEAR ALGEBRA FINAL EXAM (Take-home)

December 6 (Wed), 2017
Due date: December 15 (Fri), 2017
Instructor: Yasuyuki Kachi
Line \#: 25751.

ID \#:
Name:

This take-home part of Midterm Exam is worth 140 points and is due in class Friday, December 15th, 2017. Submission after 1:30 pm, December 15 th, will not be accepted.
[I] (Take-home; 20pts) Let A be an $n \times n$ matrix, with entires in \mathbb{C}. Let $\lambda=\lambda_{0} \in \mathbb{C}$ be one of the eigenvalues of A. Recall that the eigenspace of A with respect to its eigenvalue $\lambda=\lambda_{0}$ is defined as

$$
V_{\lambda_{0}}=\left\{x \in \mathbb{C}^{n} \mid A x=\lambda_{0} x\right\} .
$$

(1) True or false : \quad " $\boldsymbol{x} \in V_{\lambda_{0}}, \boldsymbol{y} \in V_{\lambda_{0}} \Longrightarrow \boldsymbol{x}+\boldsymbol{y} \in V_{\lambda_{0}} . "$
$\square \quad$ True.
$\square \quad$ False. (Check one. $)$
(2) True or false : $\quad " x \in V_{\lambda_{0}}, \quad \alpha \in \mathbb{C} \Longrightarrow \alpha \boldsymbol{x} \in V_{\lambda_{0}} . "$
$\square \quad$ True.
$\square \quad$ False. (Check one. $)$
1

Line \#: 25751.

ID \# :
Name:
[II] (Take-home; 30pts) Complete the field axioms.

- Field axioms. Each of $k=\mathbb{R}$ and $k=\mathbb{C}$ satisfies the following axioms:
(i) $\alpha+\beta=\beta+\alpha$
(ii) $\alpha+(\beta+\gamma)=(\quad)+$
(iii) $\alpha+0=$ \qquad
(iv) $\alpha+(-\alpha)=$
(v) $\alpha \beta=\beta \alpha$
(vi) $\alpha(\beta \gamma)=(\quad)$.
(vii) $\quad(\alpha+\beta) \gamma \quad+$
(viii) $\alpha \cdot 1=$ \qquad .
(ix) For $\alpha \neq 0$, there is α^{-1} such that $\alpha \alpha^{-1}=1$.
(x) $\quad 0 \neq 1$.

Line \#: 25751.

ID \# :
Name:
[III] (Take-home; 30pts) Let k be a field.
(1) True or false : "In a field $k, 0 \cdot \alpha=0 . "$
$\square \quad$ True.
$\square \quad$ False. (Check one. $)$
(2) Give the definition of $2 \in k$.

$$
2=+\quad+
$$

(3) True or false : "In a field $k, 1+1 \neq 0 . "$Always true, no matter what the field k is.Not always true. It depends on the field k.

$$
(\underline{\text { Check one. }})
$$

Line \#: 25751.

ID \# :
Name:
[IV] (Take-home; 30pts) Complete the vector space field axioms.

- Vector space axioms.

Let k be a field. V is said to be a k-vector space, if $\boldsymbol{x}+\boldsymbol{y} \in V \quad(\boldsymbol{x}, \boldsymbol{y} \in V)$ and $\alpha \boldsymbol{x} \in V \quad(\alpha \in k$ and $\boldsymbol{x} \in V)$ are both defined, and furthermore, V has a distinguishable element $\mathbf{0}$, such that the following (i) through (viii) are satisfied:

$$
\begin{equation*}
x+y=y+x \tag{i}
\end{equation*}
$$

(ii) $x+(y+z)=(\quad)+$
(iii) $x+0=$
\qquad .
(iv) For each $x \in V$, there exists $-x \in V$ such that $x+(-x)=$ \qquad .
(v) $\alpha(\beta \boldsymbol{x})=(\square)$.
(vi) $\alpha(\boldsymbol{x}+\boldsymbol{y})=\quad+$
(vii) $\quad(\alpha+\beta) x=+$
(viii) $1 \cdot x=$
\qquad .

Line \#: 25751.

ID \#:
Name:
[V] (Take-home; 30pts) Let k be a field.
(1) True or false : " k itself is a k-vector space."True.
False.
(Check one. $)$
(2) True or false: " $\{\mathbf{0}\}$ is a k-vector space."
$\square \quad$ True.
$\square \quad$ False.
(Check one. $)$

$$
k^{n}=\left\{\left.\boldsymbol{x}=\left[\begin{array}{c}
\alpha_{1} \tag{3}\\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right] \quad \right\rvert\, \quad \alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \in \square\right.
$$

is an example of a k-vector space, with respect to the usual vector addition and scalar multiplication. (Fill an appropriate symbol in the box.)

