Math 290 ELEMENTARY LINEAR ALGEBRA FINAL EXAM (Take-home)

December 6 (Wed), 2017 Due date: December 15 (Fri), 2017

Instructor: Yasuyuki Kachi

Line #: 25751.

<u>ID # :</u> <u>Name :</u>

This take-home part of Midterm Exam is worth 140 points and is due in class Friday, December 15th, 2017. Submission after 1:30 pm, December 15th, will not be accepted.

[I] (Take-home; 20pts) Let A be an $n \times n$ matrix, with entires in \mathbb{C} . Let $\lambda = \lambda_0 \in \mathbb{C}$ be one of the eigenvalues of A. Recall that the eigenspace of A with respect to its eigenvalue $\lambda = \lambda_0$ is defined as

$$V_{\lambda_0} = \left\{ \left. \boldsymbol{x} \in \mathbb{C}^n \right| A \boldsymbol{x} = \lambda_0 \boldsymbol{x} \right\}.$$

(1) <u>True or false</u>: " $\boldsymbol{x} \in V_{\lambda_0}, \ \boldsymbol{y} \in V_{\lambda_0} \implies \boldsymbol{x} + \boldsymbol{y} \in V_{\lambda_0}.$ "

$$\Box$$
 True. \Box False. (Check one.)

(2) True or false: "
$$\boldsymbol{x} \in V_{\lambda_0}, \ \alpha \in \mathbb{C} \implies \alpha \, \boldsymbol{x} \in V_{\lambda_0}.$$
"
 \Box True. \Box False. (Check one.

 ID # :
 Name :

[II] (Take-home; 30pts) Complete the field axioms.

- Field axioms. Each of $k = \mathbb{R}$ and $k = \mathbb{C}$ satisfies the following axioms:
 - (i) $\alpha + \beta = \beta + \alpha$.

(ii)
$$\alpha + (\beta + \gamma) = () +$$

_ .

(iii)
$$\alpha + 0 =$$

(iv)
$$\alpha + (-\alpha) =$$
_____.

(v)
$$\alpha\beta = \beta\alpha$$
.

(vi)
$$\alpha(\beta\gamma) = ($$
).

(vii)
$$(\alpha + \beta)\gamma = +$$

(viii) $\alpha \cdot 1 =$ _____.

(ix) For
$$\alpha \neq 0$$
, there is α^{-1} such that $\alpha \alpha^{-1} = 1$.

 $(x) \qquad 0 \neq 1.$

Line #: 25751.

	ID # :	Name :
[III]	(Take-home; 30pts) Let	et k be a field.
(1)	True or false : "In a	a field $k, 0 \cdot \alpha = 0.$ "
	\Box True.	\Box False. (<u>Check one.</u>)
(2)	Give the definition of $2 \in k$.	
	2	=
(3)	True or false : "In a "	a field $k, 1+1 \neq 0.$ "

- \Box Always true, no matter what the field k is.
- \Box Not always true. It depends on the field k.

$$\left(\underline{\text{Check one.}} \right)$$

ID # : Name :

[IV] (Take-home; 30pts) Complete the vector space field axioms.

• Vector space axioms.

Let k be a field. V is said to be a <u>k-vector space</u>, if $\boldsymbol{x} + \boldsymbol{y} \in V$ $(\boldsymbol{x}, \boldsymbol{y} \in V)$ and $\alpha \boldsymbol{x} \in V$ $(\alpha \in k \text{ and } \boldsymbol{x} \in V)$ are both defined, and furthermore, V has a distinguishable element **0**, such that the following (i) through (viii) are satisfied:

(i)
$$\boldsymbol{x} + \boldsymbol{y} = \boldsymbol{y} + \boldsymbol{x}$$

(ii)
$$\boldsymbol{x} + (\boldsymbol{y} + \boldsymbol{z}) = ($$
 $) +$

(iii)
$$\boldsymbol{x} + \boldsymbol{0} =$$

(iv) For each $\boldsymbol{x} \in V$, there exists $-\boldsymbol{x} \in V$ such that $\boldsymbol{x} + (-\boldsymbol{x}) =$ _____.

(v)
$$\alpha(\beta \boldsymbol{x}) = ($$
 $)$

(vi)
$$\alpha (\boldsymbol{x} + \boldsymbol{y}) = +$$

(vii)
$$(\alpha + \beta)\boldsymbol{x} = +$$

(viii)
$$1 \cdot \boldsymbol{x} =$$
 _____.

is an example of a k-vector space, with respect to the usual vector addition and scalar multiplication. (Fill an appropriate symbol in the box.)