Math 290 ELEMENTARY LINEAR ALGEBRA MIDTERM EXAM (In-Class)

October 9 (Mon), 2017
Instructor: Yasuyuki Kachi
Line \#: 25751.

ID \# :
Name:

This in-class exam is worth 120 points. The duration of this exam is 50 minutes (start at 11:00am, finish at 11:50am).
[I] (20pts) (1) What is the 2×2 identity matrix I ? Write it out as in

(2) The system

$$
\left\{\begin{aligned}
2 x-7 y= & 5 \\
x-6 y= & 1
\end{aligned}\right.
$$

is rewritten as

Line \#: 25751.

ID \# :

Name:
[II] (20pts) Let

$$
A=\left[\begin{array}{cc}
5 & 2 \sqrt{6} \\
2 \sqrt{6} & 5
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
9 & 4 \sqrt{5} \\
4 \sqrt{5} & 9
\end{array}\right]
$$

(1a)

$$
\operatorname{det} A=
$$

\qquad .
(1b) $\operatorname{det} B=$
\qquad .

$$
\begin{equation*}
\operatorname{det}(A B)= \tag{2}
\end{equation*}
$$

\qquad .
(3) True or false : $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$.

True.
$\square \quad$ False.
(Check one. $)$

Line \#: 25751.

ID \# :
Name:
[III] $\quad(40 \mathrm{pts}) \quad$ Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], \quad B=\left[\begin{array}{ll}p & q \\ r & s\end{array}\right] . \quad$ Suppose $\quad A B=I$.
(1) True or false : $\quad B A=I$.

True.
$\square \quad$ False. (Check one. $)$
(2) True or false : $B=A^{-1}$.
(3) True or false : $A=B^{-1}$.
True.
$\square \quad$ False. (Check one. $)$
(4) Explain why you chose the answers you chose for (1), (2) and (3) above.

Reason: If $A B=I$, then by rule, $\operatorname{det} A$
\square exists. Multiply \square from the \qquad to the two sides
\square and get $B=A^{-1}$, thanks to law.

Then $B A=I$. Hence also $A=B^{-1}$.

Line \#: 25751.
ID \# :
[IV] (10pts) True or False :

For

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \quad \text { and } \quad B=\left[\begin{array}{cc}
p & q \\
r & s
\end{array}\right]
$$

$$
\begin{equation*}
(A+B)(A-B)=A^{2}-B^{2} \tag{1}
\end{equation*}
$$

True.
False. (Check one. $)$
(2)

$$
(\operatorname{det} A)+(\operatorname{det} B)=\operatorname{det}(A+B)
$$

True.
False. (Check one. $)$

Line \#: 25751.

ID \# :
Name:
[V] (10pts) Find the determinant of

$$
A=\left[\begin{array}{ccc}
-a^{2} & a b & a c \\
a b & -b^{2} & b c \\
a c & b c & -c^{2}
\end{array}\right]
$$

$$
\operatorname{det} A=
$$

\qquad .

Work.

Line \#: 25751.

ID \# :
Name:
[VI] (20pts) (1) Circle all matrices that are in reduced row echelon form:

$$
\begin{array}{ll}
\text { (1a) }\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right] . & \text { (1b) }\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] . \\
\text { (1c) }\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] . & \text { (1d) }\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right] . \\
\text { (1e) }\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right] . & \text { (1f) }\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
\end{array}
$$

(2) Make the matrix below a reduced row echelon form, by filling in either 0 or '*' (where $*$ denotes an arbitrary number) to the empty boxes, where all the leading 1 s are already shown in the matrix.

Line \#: 25751.

ID \# :
Name:
[VII] (Extra Credit; 10pts) Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Assume $A^{T}=-A$. Prove that there is a scalar s such that

$$
A=s\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] .
$$

Proof. $\quad A^{T}=-A \quad$ reads

Hence

From these, conclude

$$
a=\begin{aligned}
& \text { _ }
\end{aligned}, \quad d=
$$

Hence

