Math 290 ELEMENTARY LINEAR ALGEBRA

EXTRA CREDIT HOMEWORK - I

September 13 (Wed), 2017
Due Date: September 25 (Mon), 2017
Instructor: Yasuyuki Kachi
Line \#: 25751.

ID \#:

Name:
[I] (20pts) Compare the following two systems of equations:

$$
\begin{array}{lr}
x_{1} x_{6}-x_{2} x_{5}+x_{3} x_{8}-x_{4} x_{7}=1, & x_{9} x_{14}-x_{10} x_{13}+x_{11} x_{16}-x_{12} x_{15}=1, \\
x_{1} x_{10}-x_{2} x_{9}+x_{3} x_{12}-x_{4} x_{11}=0, & x_{5} x_{14}-x_{6} x_{13}+x_{7} x_{16}-x_{8} x_{15}=0, \\
x_{1} x_{14}-x_{2} x_{13}+x_{3} x_{16}-x_{4} x_{15}=0, & x_{5} x_{10}-x_{6} x_{9}+x_{7} x_{12}-x_{8} x_{11}=0, \\
x_{1} x_{8}-x_{4} x_{5}+x_{2} x_{7}-x_{3} x_{6}=0, & x_{9} x_{16}-x_{12} x_{13}+x_{10} x_{15}-x_{11} x_{14}=0, \\
(*) & x_{1} x_{12}-x_{4} x_{9}+x_{2} x_{11}-x_{3} x_{10}=0, \\
& x_{5} x_{16}-x_{4} x_{13}+x_{2} x_{15}-x_{3} x_{14}=1, \\
& x_{1} x_{7}-x_{3} x_{5}-x_{2} x_{8}+x_{4} x_{6}=0, \\
& x_{5} x_{12}-x_{8} x_{9}+x_{6} x_{11}-x_{7} x_{10}=1, \\
x_{1} x_{11}-x_{3} x_{9}-x_{2} x_{12}+x_{4} x_{10}=1, & x_{5} x_{15}-x_{7} x_{13}-x_{10} x_{16}+x_{12} x_{14}=0, \\
x_{1} x_{15}-x_{3} x_{13}-x_{2} x_{16}+x_{14} x_{14}=0, & x_{5} x_{11}-x_{7} x_{9}-x_{6} x_{12}+x_{8} x_{10}=0,
\end{array}
$$

and

$$
\begin{align*}
-x_{1}-x_{6} & =0, & x_{4}-x_{10}=0, & -x_{3}-x_{14}=0, \\
x_{8}+x_{9} & =0, & -x_{7}+x_{13}=0, & -x_{11}-x_{16}=0, \\
x_{3}-x_{8} & =0, & -x_{2}-x_{12}=0, & -x_{1}-x_{16}=0, \tag{**}\\
-x_{6}-x_{11} & =0, & -x_{5}-x_{15}=0, & -x_{9}+x_{14}=0, \\
-x_{4}-x_{7} & =0, & -x_{1}-x_{11}=0, & x_{2}-x_{15}=0, \\
-x_{5}+x_{12} & =0, & x_{6}+x_{16}=0, & x_{10}+x_{13}=0 .
\end{align*}
$$

(1) Find the complete solution set for the system ($* *$):
$\left(x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4}\right.$, \qquad
\qquad
\qquad
\qquad

$$
x_{5}, \quad x_{6}, \quad x_{7}, \quad x_{8}
$$

$$
=
$$

$$
\ldots \text {, }
$$

\qquad , —_ \qquad
$x_{9}, \quad x_{10}, \quad x_{11}, \quad x_{12}$,
$\left.x_{13}, \quad x_{14}, \quad x_{15}, \quad x_{16}\right)$ \qquad

The right way to describe the solution set is to parametrize it. Thus, your answer should involve parameters (such as s, t, u, etc.).
(2) Find the exact condition ($=$ necessary and sufficient condition) for the parametrized solution which you found in (1) to also become a solution for $(*)$. The answer is a single identity that involves the parameters which you have used in your answer for for (1) (s, t, u, etc.).
(3) Give your wild guess of the complete solution set for $(*)$.

$$
\begin{aligned}
& \left(x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4}, \quad(\ldots, \quad-\quad, \quad-\right. \\
& x_{5}, \quad x_{6}, \quad x_{7}, \quad x_{8}, \\
& = \\
& = \\
& \text {, } \\
& \text {, } \\
& \text {, } \\
& x_{9}, \quad x_{10}, \quad x_{11}, \quad x_{12}, \\
& \left.x_{13}, \quad x_{14}, \quad x_{15}, \quad x_{16}\right) \\
& \text {, } \\
& \text {, } \\
& \text {, } \\
& \text {, }
\end{aligned}
$$

such that

Again, the right way to describe the solution set is to parametrize it. Thus, your answer should involve parameters (such as s, t, u, v etc.). Since this is a "guess", no justification is necessary. Note that, the answer for (3) and the answer for (1) are not identical .

