Math 105 TOPICS IN MATHEMATICS STUDY GUIDE FOR FINAL EXAM – FA

May 1 (Fri), 2015

Instructor: Yasuyuki Kachi

Line #: 52920.

- §18. Exponential functions.
- Exponential functions are functions such as

 2^x , e^x , 3^x , 4^x , \cdots .

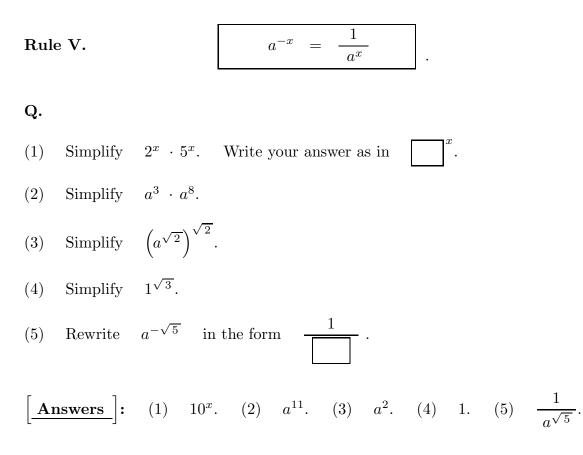
Definition. Assume that a is a positive real number, x is a real number, and ℓ is an integer, $\ell > 1$. For each index n, let $c_n(\ell)$ be the truncation at the n-th digit under the " ℓ -ary" point of x. Define

 $a^x = \lim_{n \to \infty} a^{c_n(\ell)}$

This limit exists, and it does not depend on the choice of ℓ .

Exponential Laws (refined). Let x and y be real numbers. Let a and b be positive real numbers. Then

Rule I. $\left(ab\right)^x = a^x b^x$.Rule II. $a^x a^y = a^{x+y}$.Rule III. $\left(a^x\right)^y = a^{xy}$.Rule IV. $a^0 = 1$, $1^x = 1$



• e^x .

Now, among all exponential functions a^x , the one with a = e has a very very special place. Often when we say "the exponential function", it refers to e^x . Here is the reason why:

Theorem. Let x be an arbitrary real number. Then

$$e^{x} = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^{n}$$

=
$$\lim_{k \to \infty} \left(1 + \frac{1}{1!}x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \frac{1}{4!}x^{4} + \dots + \frac{1}{k!}x^{k} \right).$$

٦

• Notational remark. We often write

$$\lim_{k \to \infty} \left(1 + \frac{1}{1!}x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \frac{1}{4!}x^4 + \dots + \frac{1}{k!}x^k \right)$$

as

$$1 + \frac{1}{1!}x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \frac{1}{4!}x^4 + \frac{1}{5!}x^5 + \cdots$$

If you incorporate this notation, then the above theorem is paraphrased as follows:

Theorem paraphrased. Let x be an arbitrary real number. Then

$$e^{x} = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^{n}$$
$$= 1 + \frac{1}{1!}x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \frac{1}{4!}x^{4} + \frac{1}{5!}x^{5} + \cdots$$

Example 1.
$$\sqrt{e} = 1 + \frac{1}{1!} \cdot \frac{1}{2} + \frac{1}{2!} \cdot \left(\frac{1}{2}\right)^2 + \frac{1}{3!} \cdot \left(\frac{1}{2}\right)^3 + \frac{1}{3!} \cdot \left(\frac{1}{2}\right)^3 + \frac{1}{4!} \cdot \left(\frac{1}{2}\right)^4 + \frac{1}{5!} \cdot \left(\frac{1}{2}\right)^5 + \frac{1}{6!} \cdot \left(\frac{1}{2}\right)^5 + \frac{1}{6!} \cdot \left(\frac{1}{2}\right)^6 + \cdots$$

• Exponential Laws pertaining to e^x .

Rule II.	$e^x e^y = e^{x+y} \qquad .$
Rule III.	$\left(e^x\right)^y = e^{xy} \qquad .$
Rule IV.	$e^0 = 1$.
Rule V.	$e^{-x} = \frac{1}{e^x} \qquad .$

Q. Find the limits:

(1)
$$\lim_{n \to \infty} \left(1 + \frac{3}{n}\right)^n = ?$$
 (2) $\lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^n = ?$

(3)
$$\lim_{n \to \infty} \left(1 - \frac{\sqrt{2}}{n} \right)^n = ?$$

[Answers]: (1)
$$e^3$$
. (3) e^{-1} . (2) $e^{-\sqrt{2}}$.

Q. Write up each of (1) e^2 , (1) $\sqrt[3]{e}$, and (3) e^{-1} as an infinite sum in the same fashion as Example 1.

$\begin{bmatrix} \underline{\mathbf{Answers}} \end{bmatrix}:$ (1) $e^2 = 1 + \frac{1}{1!} \cdot 2 + \frac{1}{2!} \cdot 2^2 + \frac{1}{3!} \cdot 2^3 + \frac{1}{4!} \cdot 2^4 + \cdots$ (2) ${}^3\sqrt{e} = 1 + \frac{1}{1!} \cdot \frac{1}{3} + \frac{1}{2!} \cdot \left(\frac{1}{3}\right)^2 + \frac{1}{3!} \cdot \left(\frac{1}{3}\right)^3 + \frac{1}{4!} \cdot \left(\frac{1}{3}\right)^4 + \frac{1}{5!} \cdot \left(\frac{1}{3}\right)^5 + \cdots$ (3) $e^{-1} = 1 + \frac{1}{1!} \cdot \left(-1\right) + \frac{1}{2!} \cdot \left(-1\right)^2 + \frac{1}{3!} \cdot \left(-1\right)^3 + \frac{1}{4!} \cdot \left(-1\right)^4 + \cdots$ $\left(= 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \cdots \right).$

• §19. Logarithm.

 \star ~ Where do 'log's show up? Let's go back to

$$2^x, e^x, 3^x, 4^x, \cdots$$

Pop quiz. Can you fill in the boxes?

$$2^x = 6$$

$$[\underline{\mathbf{Answers}}]: \qquad \qquad 2^x = 6^{(\log_6 2)x}.$$
$$10^x = e^{(\ln 10)x}.$$

So, the first role of 'log' is it serves as a 'buffer', to go from one exponential function to another (such as going from 2^x to 3^x). And, if you realize, this actually pretty much tells you what 'log's are.

Indeed, substitute x = 1 into

$$a^x = b^{(\log_b a) x}$$

and get

$$a = b^{\log_b a}$$

So, the bottm line of what 'log' is is summarized in one line:

"
$$x = \log_b a$$
 is a number satisfying $b^x = a$."

Pop quiz. Can you fill in the boxes?

$$2 = 6$$

$$10 = e$$

$$[\underline{\text{Answers}}]: \qquad 2 = 6^{\boxed{\log_6 2}} .$$
$$10 = e^{\boxed{\ln 10}} .$$

 \star ~ There is one thing you might wonder at this stage:

- the relationship between $\log_2 3$ and $\log_3 2$,
- $\circ \quad \text{the relationship between} \qquad \log_3 4 \qquad \text{ and } \qquad \log_4 3,$
- $\circ \quad \text{the relationship between} \quad \log_7 5 \qquad \text{and} \quad \log_5 7,$

and so on. This is simple:

$$\log_3 2 = \frac{1}{\log_2 3},$$
$$\log_3 4 = \frac{1}{\log_4 3},$$
$$\log_7 5 = \frac{1}{\log_5 7}.$$

More generally:

Fact. Let *a* and *b* be positive real numbers. Then

$$\log_b a = \frac{1}{\log_a b}$$

•

Pop quiz. Write each of the following in the form

$$\log \Box \qquad .$$
(a) $\frac{1}{\log_3 11}$. (b) $\frac{1}{\log_{10} 24}$. (c) $\frac{1}{\ln 5}$.
$$\left[\underline{\text{Answers}} \right]$$
: (a) $\log_{11} 3$. (b) $\log_{24} 10$. (c) $\log_5 e$.
$$8$$

Q 1.
$$\log_2 2048 =?$$
 $\log_2 8192 =?$ $\log_2 32768 =?$ $\log_2 65536 =?$

Consult the table below, if necessary.

$$[$$
Answers $]$: $\log_2 2048 = 11.$ $\log_2 28192 = 13.$

$$\log_2 32668 = 15.$$
 $\log_2 65536 = 16.$

Q 2.
$$\log_2 \frac{1}{2048} =?$$
 $\log_2 \frac{1}{4096} =?$ $\log_2 \frac{1}{16384} =?$
 $\log_2 \frac{1}{65536} =?$

(Consult the table above if necessary.)

$$[\underline{\mathbf{Answers}}]: \qquad \log_2 \frac{1}{2048} = -11. \qquad \log_2 \frac{1}{4096} = -12. \\ \log_2 \frac{1}{16384} = -14. \qquad \log_2 \frac{1}{65536} = -16.$$

Q 3.
$$\log_3 19683 =?$$
 $\log_3 177147 =?$ $\log_3 1594323 =?$

Consult the table below, if necessary.

$$\log_{10} 10^n = n$$
.

Also, in retrospect,

$$\log_2 2^n = n$$

and

$$\log_3 3^n = n$$

More generally:

$$\log_a a^n = n$$

(where n is an integer).

 \star What's more, in this there is no reason *n* has to be an integer in order for the statement to be true.

$$\log_a a^x = x$$

(where x is a real number).

• $\log_b 1$. No matter what b is (provided b is a positive real number and $b \neq 1$), $\log_b 1$ always equal to 0.

$$\log_b 1 = 0.$$

• $\log_1 a$ is undefined.

 $\log_1 a$ is undefined. This is just because 1^x always equals 1, no matter what x is. Another way to see it is $\log_1 a$ would be the reciprocal of $\log_a 1$, but $\log_a 1$ equals 0. The reciprocal of 0 is undefined. (You might quibble that, because of $1^1 = 1$, we should say $\log_1 1 = 1$. True. However, someone else might argue that, because of $1^0 = 1$, we should say $\log_1 1 = 0$. The bottom line is, $\log_1 a$ for $a \neq 1$ is undefined, so, considering $\log_1 a$ as a function on a is pointless.)

• $\log_0 a$ is undefined.

 $\log_0 a$ is undefined. This is just because 0^x always equals 0, no matter what x is (provided x is positive).

• $\log_b 0$ is undefined.

 $\log_b 0$ is undefined. Actually, depending on a context, provided b is a positive real number and $b \neq 1$, $\log_b 0$ makes sense as a limit

$$\lim_{x \to 0} \log_b x.$$

Let's not worry about this for now, though just in case

$$\lim_{x \to 0} \log_b x = \begin{cases} -\infty & (b > 1), \\ +\infty & (b < 1). \end{cases}$$

• So, from now on, when we talk about $\log_a b$, we always assume $a > 0, \quad a \neq 1, \quad \text{and} \quad b > 0.$

In the future, whenever we write $\log_a b$, these conditions on a and b will be automatically assumed.

• Summary.

This is a good place to review two important things we have learned so far. One:

"
$$x = \log_b a$$
 is a number satisfying $b^x = a$ ".

(This is from page 4.) In particular,

$$b^{\log_b a} = a \qquad \Big(a > 0\Big).$$

Two:

$$\log_a a^x = x \qquad (x \text{ is a real number}).$$

(This is from page 15.)

These are usually put together, and called cancellation laws:

• Cancellation laws.

$$b^{\log_b a} = a \quad (a > 0).$$

 $\log_a a^x = x \quad (x \text{ is a real number}).$

It is worthwhile to isolate the cancellation laws for the natural log 'ln':

• Cancellation laws for 'ln'.

$$e^{\ln a} = a \quad (a > 0).$$

 $\ln e^x = x \quad (x \text{ is a real number}).$

Q. Use cancellation laws to simplify:

(1) $2^{\log_2 5}$. (2) $3^{\log_3 10}$. (3) $5^{\log_5 \frac{7}{3}}$. (4) $e^{\ln \sqrt{2}}$.

(5)
$$9^{\log_3 5}$$
. (Hint: $9 = 3 \cdot 3$, so $9^{\log_3 5} = 3^{\log_3 5} \cdot 3^{\log_3 5}$.)

[Answers]: (1) 5. (2) 10. (3)
$$\frac{7}{3}$$
. (4) $\sqrt{2}$.

(5) 25.

Q. Use cancellation laws to simplify:

(1)
$$\log_3 3^6$$
. (2) $\log_2 2^{\frac{7}{2}}$. (3) $\log_{10} \sqrt{10}$. (4) $\ln e^{\pi}$.

(5)
$$\log_{49} 7.$$
 (Hint: $7 = 49^{\frac{1}{2}}.$)

$$\left[\underline{\mathbf{Answers}} \right]: (1) \quad 6. \quad (2) \quad \frac{7}{2}. \quad (3) \quad \frac{1}{2}. \quad (4) \quad \pi.$$

$$(5) \quad \frac{1}{2}.$$

• Change of base.

There are some important laws about 'log'. Just like the two exponential functions are related, two logarithms are related:

$$\log_b c = \frac{\log_a c}{\log_a b}.$$

In particular,

$$\log_b c = \frac{\ln c}{\ln b}.$$

Q. Simplify:

(1)
$$\frac{\log_3 7}{\log_3 4}$$
. (2) $\frac{\log_{11} 26}{\log_{11} 15}$. (3) $\frac{\ln 100}{\ln 10}$. (4) $\frac{\log_2 7}{\log_2 e}$.

Write the answer in the form

$$\log_{\Box}$$
 or \ln

(which ever is applicable). If there is still a room for simplification, simplify.

[<u>Answers</u>]: (1) $\log_4 7$. (2) $\log_{15} 26$. (3) $\log_{10} 100 = 2$. (4) $\ln 7$.

• Logarithmic Laws.

Below (i), (ii) and (iii) are the logarithmic laws for 'ln'.

(i)
$$\ln (xy) = (\ln x) + (\ln y)$$
$$(x > 0, y > 0),$$
(ii)
$$\ln \frac{x}{y} = (\ln x) - (\ln y)$$
$$(x > 0, y > 0),$$
(iii)
$$\ln (x^{a}) = a (\ln x)$$
$$(x > 0).$$

★ Though there is no compelling reason to do so, just for once I want to use the symbols \heartsuit , \diamondsuit , **♣** for x, y and z. It will give you a different impression:

(i)
$$\ln (\heartsuit \diamondsuit) = (\ln \heartsuit) + (\ln \diamondsuit) \\ (\heartsuit > 0, \ \diamondsuit > 0),$$

(ii)
$$\ln \frac{\heartsuit}{\diamondsuit} = (\ln \heartsuit) - (\ln \diamondsuit) \\ (\heartsuit > 0, \ \diamondsuit > 0),$$

(iii)
$$\ln (\heartsuit^{\bullet}) = \bullet (\ln \heartsuit) \\ (\heartsuit > 0).$$

• Let's isolate the case $\clubsuit = \frac{1}{2}$ in (iii):

$$\ln\left(\heartsuit^{\frac{1}{2}}\right) = \frac{1}{2}\left(\ln\heartsuit\right) \qquad \left(\heartsuit > 0\right).$$

or the same

$$\ln\sqrt{\heartsuit} = \frac{1}{2} \left(\ln\heartsuit\right) \qquad \left(\heartsuit > 0\right).$$

Example. $(\ln 2) + (\ln 3)$ equals $\ln 6$. Note that $(\ln 2) + (\ln 3) \neq \ln 5$. Example. $(\ln 3) - (\ln 2)$ equals $\ln \frac{3}{2}$. Note that

Example.
$$(\ln 3) - (\ln 2)$$
 equals $\ln \frac{3}{2}$. Note that
 $(\ln 3) - (\ln 2) \neq \ln 1$.

Example. 5 ln 2 equals ln 32. Note that

 $5 \ln 2 \neq \ln 10.$

Example. $\frac{1}{2}$ ln 6 equals $\ln \sqrt{6}$. Note that

$$\frac{1}{2} \ln 6 \neq \ln 3.$$

Example. Let's simplify

$$e^{(\ln 3) + (\ln 7)}.$$

We use (i) of the Logarithmic Laws, and Cancellation Laws. This quantity is of the form e^{\heartsuit} , where $\heartsuit = (\ln 3) + (\ln 7)$. By (i) of the Logarithmic Laws, this \heartsuit equals $\ln 21$. Hence the original quantity e^{\heartsuit} equals $e^{\ln 21}$. By Cancellation Laws, this quantity equals 21.

Example. Let's simplify

 $e^{3 \ln 2}$.

We use (iii) of the Logarithmic Laws, and Cancellation Laws. This quantity is of the form e^{\heartsuit} , where $\heartsuit = 3 \ln 2$. By (iii) of the Logarithmic Laws, this \heartsuit equals $\ln 8$. Hence the original quantity e^{\heartsuit} equals $e^{\ln 8}$. By Cancellation Laws, this quantity equals 8.

Example. Let's simplify

$$\ln 2^{\frac{1}{\ln 2}}$$
.

We use (iii) of the Logarithmic Laws. First, the above quantity is of the form $\ln \heartsuit^{\bullet}$ where $\heartsuit = 2$, and $\clubsuit = \frac{1}{\ln 2}$. By (iii) of the Logarithmic Laws, this quantity equals $\clubsuit \ln \heartsuit$, that is,

$$\frac{1}{\ln 2} \cdot \ln 2.$$

This is simplified to 1. So the answer is 1.

Example. Let's simplify

 $2^{\frac{1}{\ln 2}}$.

As for this, we have just worked out in the previous example that, ' ln ' of the quantity $2\frac{1}{\ln 2}$ equals 1. Hence the quantity $2\frac{1}{\ln 2}$ itself equals *e*. So, the answer is *e*.

Exercise 9.

(1) Simplify
$$(\ln 3) + (\ln 12)$$
. Write your answer in the form $\ln \square$.
(2) Simplify $(\ln 15) - (\ln 5)$. Write your answer in the form $\ln \square$.
(3) Rewrite 4 ln 3 in the form $\ln \square$.
(4) Rewrite $\ln 256$ in the form \square $(\ln 2)$.
(5) Rewrite $\ln 3\sqrt{7}$ in the form \square $(\ln 7)$.
(6) Rewrite $\ln 5\sqrt{81}$ in the form \square $(\ln 3)$.
(7) Simplify $e^{(\ln 4) + (\ln 13)}$.
(8) Simplify $e^{2 (\ln 5)}$.
(9) Simplify $\ln 5^{\frac{1}{10}5}$.
(10) Simplify $5^{\frac{1}{10}5}$.
(10) Simplify $5^{\frac{1}{10}5}$.
(10) Simplify $5^{\frac{1}{10}5}$.
(11) $\ln 36$. (2) $\ln 3$. (3) $\ln 81$. (4) $8 \ln 2$.
(5) $\frac{1}{3} \ln 7$. (6) $\frac{4}{5} \ln 3$. (7) 52. (8) 25. (9) 1.
(10) e.

Exercise 10. Verify:

- (1) $2^{\frac{x}{\ln 2}} = e^x.$
- $(2) \quad x^x = e^{x \ln x}.$
- $(3) \quad x^{\frac{1}{x}} = e^{\frac{\ln x}{x}}.$

(4)
$$2^x = e^{x (\ln 2)}$$
.

(5) $x^{\ln x} = e^{\left(\left(\ln x\right)^2\right)}$.

(6)
$$2^{\ln x} = e^{(\ln 2)(\ln x)} = x^{\ln 2}.$$

(7)
$$\left(\ln x\right)^{\frac{1}{x}} = e^{\frac{\ln(\ln x)}{x}}$$

Solutions: Take 'ln' of the two sides, and verify that the resulting qualtities from the two sides are equal.

Exercise 11.

(1) Are
$$x^{(y^z)}$$
 and $(x^y)^z$ the same?
(2) Are $(x^y)^{(z^w)}$, $x^{((y^z)^w)}$ and $x^{(y^{(z^w)})}$ all the same?

[<u>Answers</u>]: (1) They are different. Indeed,

•

$$2^{\binom{3^2}{3}} = 2^9, \qquad (2^3)^2 = 8^2 = 2^6.$$

20

(2) They are all different. Indeed,

$$(2^3)^{(2^3)} = 8^8 = 2^{24},$$
 $2^{(3^2)^3} = 2^{(9^3)} = 2^{729},$
 $2^{(3^{(2^3)})} = 2^{(3^8)} = 2^{6561}.$

• §22. Polynomials and their arithmetic.

Q. Permute the order of terms, if necessary, o make each of the given polynomials in the ascending order.

(1)
$$2x + x^4 - \frac{1}{2}x^2$$
. (2) $-\frac{4}{3}x^3 - 5x^2 - 4x^5$.

(3)
$$x^8 + 5x^6 - 10x^9 + 3.$$
 (4) $x + \sqrt{5}x^5 + \sqrt{3}x^3 - \sqrt{2}x^2.$

(5)
$$x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1.$$

$$\begin{bmatrix} \underline{\mathbf{Answers}} \end{bmatrix}:$$
(1) $2x - \frac{1}{2}x^2 + x^4.$
(2) $-5x^2 - \frac{4}{3}x^3 - 4x^5.$
(3) $3 + 5x^6 + x^8 - 10x^9.$
(4) $x - \sqrt{2}x^2 + \sqrt{3}x^3 + \sqrt{5}x^5.$

(5)
$$1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9$$
.

Q. Permute the order of terms, if necessary, to make each of the given polynomials in the descending order.

(1)
$$6x^2 + x^3$$
. (2) $\frac{1}{2}x^3 + \frac{1}{3}x^4 - x$.

(3)
$$x^7 + 5x^5 - 10x^8 + 4x^6$$
. (4) $1 - x^2 + x^4 - x^6 + x^8 - x^{10}$.

$$\begin{bmatrix} \underline{\mathbf{Answers}} \end{bmatrix}:$$
(1) $x^3 + 6x^2$.
(2) $\frac{1}{3}x^4 + \frac{1}{2}x^3 - x$.
(3) $-10x^8 + x^7 + 4x^6 + 5x^5$.
(4) $-x^{10} + x^8 - x^6 + x^4 - x^2 + 1$.

Q. Do

(1)
$$\left(x^7 + 3x^5 + 2x^3\right) + \left(-x^6 - x^4 - 2x^2\right).$$

(2)
$$(x^4 + 9x^3 + 1) + (-x^4 - x^3 - 5x^2 + 2x + 3).$$

(3)
$$\left(\frac{1}{2}x^3 + \frac{1}{3}x\right) + \left(\frac{1}{3}x^3 - \frac{1}{4}x\right).$$

(4)
$$f(x) + g(x)$$
, where

$$f(x) = x^{6} + 8x^{5} + 12x^{4} + 36x^{3} + 9x^{2},$$

$$g(x) = x^{8} - 3x^{6} - 8x^{4} - 24x^{3} + 45x - 120.$$

(5)
$$f(x) + g(x)$$
, where

$$f(x) = x^7 + x^5 + x^3 + x,$$

$$g(x) = x^8 + x^6 + x^4 + x^2 + 1.$$

$$\begin{bmatrix} Answers \end{bmatrix}:$$
(1) $x^7 - x^6 + 3x^5 - x^4 + 2x^3 - 2x^2.$
(2) $8x^3 - 5x^2 + 2x + 4.$
(3) $\frac{5}{6}x^3 + \frac{1}{12}x.$

$$(4) \quad x^8 - 2x^6 + 8x^5 + 4x^4 + 12x^3 + 9x^2 + 45x - 120.$$

(5)
$$x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1.$$

23

Q. Do

(1)
$$\left(x^{3} + 11x^{2} + 21x\right) - \left(-x^{2} - x + 4\right).$$

(2) $\left(-x^{7} + 5x^{6} + x^{3} - 6\right) - \left(-2x^{6} - 3x^{4} + 7x^{3} + 2x + 5\right).$
(3) $\left(\frac{3}{2}x^{4} + \frac{7}{4}x^{2}\right) - \left(\frac{1}{6}x^{4} - \frac{1}{4}x^{2} + 1\right).$
(4) $f(x) - g(x)$, where

$$f(x) = x^5 + 4x^4 + 16x^3 + 22x^2 + 18x,$$

$$g(x) = x^6 - 31x^4 - 62x^2 + 72x + 56.$$

(5)
$$f(x) - g(x)$$
, where
 $f(x) = x^{13} + x^9 + x^5 + x$, $g(x) = x^{11} + x^7 + x^3$.
[Answers]:
(1) $x^3 + 12x^2 + 22x - 4$. (2) $-x^7 + 7x^6 + 3x^4 - 6x^3 - 2x - 11$.
(3) $\frac{4}{3}x^4 + 2x^2 - 1$. (4) $-x^6 + x^5 + 35x^4 + 16x^3 + 84x^2 - 54x - 56$.

(5)
$$x^{13} - x^{11} + x^9 - x^7 + x^5 - x^3 + x$$
.

(1)
$$6\left(x^7 + 7x^6 + 21x^5\right)$$
.

(2)
$$-4\left(-x^2+5x+3\right)$$
.

$$(3) \quad \frac{8x^{10} - 20x^8 + 24x^6 - 12x^4}{4}.$$

(4)
$$\frac{1}{3}\left(\frac{3}{5}x^4 + \frac{3}{7}x^3 + \frac{3}{25}x^2 + \frac{3}{65}x\right).$$

(5)
$$3f(x)$$
 where

$$f(x) = x^5 + 4x^4 + 16x^3 + 22x^2 + 18x.$$

$$\begin{bmatrix} Answers \end{bmatrix}:$$
(1) $6x^7 + 42x^6 + 126x^5.$
(2) $4x^2 - 20x - 12.$
(3) $2x^{10} - 5x^8 + 6x^6 - 3x^4.$
(4) $\frac{1}{5}x^4 + \frac{1}{7}x^3 + \frac{1}{25}x^2 + \frac{1}{65}x.$

(5)
$$3x^5 + 12x^4 + 48x^3 + 66x^2 + 54x$$
.