
Math 105 TOPICS IN MATHEMATICS

STUDY GUIDE FOR MIDTERM EXAM – IC

March 9 (Mon), 2015

Instructor: Yasuyuki Kachi

Line #: 52920.

• §14. n-th root. Fractional exponents.

• Recall

3
√

0 = 0,

3
√

1 = 1,

3
√

8 = 2,

3
√

27 = 3,

3
√

64 = 4,

3
√

125 = 5,

3
√

216 = 6,

3
√

343 = 7,

3
√

512 = 8, and

3
√

729 = 9.

Q. 3
√

1000 =? 3
√

1331 =? 3
√

1728 =? 3
√

4913 =?

Consult the table below, if necessary.
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x3 1000 1331 1728 2197 2744 3375 4096 4913 5832 6859
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— 3
√

1000 = 10. Indeed, 1000 = 103.

3
√

1331 = 11. Indeed, 1331 = 113.

3
√

1728 = 12. Indeed, 1728 = 123.

3
√

4913 = 17. Indeed, 4913 = 173.

So, in short:

If n is a non-negative integer, and if a = n3 then 3
√

a = n .

But the real issue here is,

3
√

2 =? 3
√

3 =? 3
√

4 =? 3
√

5 =? 3
√

6 =? 3
√

7 =?

3
√

9 =? 3
√

10 =? 3
√

11 =? 3
√

12 =? 3
√

13 =? 3
√

14 =?

3
√

15 =? 3
√

16 =? 3
√

17 =? 3
√

18 =? 3
√

19 =? 3
√

20 =?

3
√

21 =? 3
√

22 =? 3
√

23 =? 3
√

24 =? 3
√

25 =? 3
√

26 =?

etc.
(

as you can see, I excluded 3
√

0 , 3
√

1 , 3
√

8 and 3
√

27
)

.

Review. What is 3
√

2 ?

3
√

2 is a number whose cube equals 2. Namely:

“ ”
x = 3

√
2 is a number satisfying x3 = 2 .

Here, we ask the same question as last time: “Does such a number exist?” The
answer is, yes, such a number indeed exists. This is just like last time we asserted
that

√
2 exists. How do we find 3

√
2 ? We can heuristically pull the decimal

expression of 3
√

2 as follows:
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0. Observe

13 = 1,

23 = 8.

←−− smaller than 2

←−− bigger than 2

So 3
√

2 must sit between 1 and 2:

1 < 3
√

2 < 2.

1. Observe

1.13 = 1.331,

1.23 = 1.728,

1.33 = 2.197,

←−− smaller than 2

←−− bigger than 2

So 3
√

2 must sit between 1.2 and 1.3:

1.2 < 3
√

2 < 1.3.

2. Observe

1.213 = 1.771561,

1.223 = 1.815848,

1.233 = 1.860867,

1.243 = 1.906624,

1.253 = 1.953125,

1.263 = 2.000376.

←−− smaller than 2

←−− bigger than 2

So 3
√

2 must sit between 1.25 and 1.26:
3



1.25 < 3
√

2 < 1.26.

3. Observe

1.2513 = 1.957816251,

1.2523 = 1.962515008,

1.2533 = 1.967221277,

1.2543 = 1.971935064,

1.2553 = 1.976656375,

1.2563 = 1.981385216,

1.2573 = 1.986121593,

1.2583 = 1.990865512,

1.2593 = 1.995616979,

1.2603 = 2.000376000.

←−− smaller than 2

←−− bigger than 2

So 3
√

2 must sit between 1.259 and 1.260:

1.259 < 3
√

2 < 1.260.

4. Observe

1.25913 = 1.996092541071,

1.25923 = 1.996568178688,

1.25933 = 1.997043891857,

1.25943 = 1.997519680584,

1.25953 = 1.997995544875,

1.25963 = 1.998471484736,

1.25973 = 1.998947500173,
4



1.25983 = 1.999423591192,

1.25993 = 1.999899757799,

1.26003 = 2.000376000000.

←−− smaller than 2

←−− bigger than 2

So 3
√

2 must sit between 1.2599 and 1.2600:

1.2599 < 3
√

2 < 1.2600.

So

3
√

2 = 1.2599...

But of course this is endless. If you want to see more digits:

3
√

2 = 1.2599210498948731647672106072782283505702514647015... .

Most importantly, the decimal expression of 3
√

2 continues forever, it never ends.

As for this, there is an algorithm for cube-rooting similar to the one for square-
rooting which we have practiced in §12. But we choose not to discuss that.

The decimal expressions of 3
√

3 , 3
√

4 , 3
√

5 , 3
√

6 , and 3
√

7
(

up to the first fifty

digits under the decimal point
)

:

3
√

3 = 1.44224957030740838232163831078010958839186925349935... ,

3
√

4 = 1.58740105196819947475170563927230826039149332789985... ,

3
√

5 = 1.70997594667669698935310887254386010986805511054305... ,

3
√

6 = 1.81712059283213965889121175632726050242821046314121... ,

3
√

7 = 1.91293118277238910119911683954876028286243905034587... .
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Review. Nothing stops us from considering the fourth-root, fifth-root, and so on
so forth.

“ ”
x = 4

√
2 is a number satisfying x4 = 2 .

“ ”
x = 5

√
3 is a number satisfying x5 = 3 .

More generally, for an arbitrary positive integer n, we may define the n-th root of
a number.

Definition (nnn-th root).

Assume a is a positive number: a > 0.
(

Here, we do not assume that a is an

integer. For example, a can be e.
)

Also, let n be a positive integer. Then

“ ”
x = n

√
a is a number satisfying xn = a .

We call n
√

a the n-th root of a .

The square-root, the cube-root, the fourth-root, the fifth-root, etc. are called

“ ”radicals.

Also, the symbol n

√

is called the radical symbol, or just the radical.

⋆ So, for n = 2, n
√

a is 2
√

a , and this is just the square-root of a. There
is absolutely nothing wrong in writing the square-root of a as 2

√
a , but it is

customary that we allow ourselves to omit the tiny 2 in front of the radical symbol.
So we usually write

√
a for 2

√
a .
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Rule A. n

√

k
√

a = nk
√

a
.

Q. Can we simplify

√√
2 ?

— Yes. 4
√

2 .

Q. Can we simplify

3
√√

2 ?

— Yes. 6
√

2 .

Q. Can we simplify

4
√

3
√

2 ?

— Yes. 12
√

2 .

Rule B.
nk

√

an = k
√

a
.

Q. Simplify 4
√

4 .

—
√

2 .

Q. Simplify 6
√

25 .

— 3
√

5 .
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Q. Simplify 15
√

27 .

— 5
√

3 .

Q. Use Rule A to simplify

3 4
√ √

(1)
√

6 . (2) 3
√

10 .

— (1) 6
√

6 . (2) 12
√

10 .

Q. Use Rule B to simplify

(1) 6
√

125 . (2) 12
√

343 . (3) 16
√

256 .

(4) 12
√

81 .

— (1)
√

5 . (2) 4
√

7 . (3)
√

2 .

(4) 3
√

3 .

Rule C.
(

n
√

a

)(

n
√

b

)

= n
√

ab .

Rule C′′′.
(

n
√

a

)(

n
√

b

)(

n
√

c

)

= n
√

abc .

Rule C′′′′′′.
(

n
√

a

)(

n
√

b

)(

n
√

c

)(

n
√

d

)

= n
√

abcd .

⋆ Rule C′, and Rule C′′ follow from Rule C. To that extent we say that Rule C′

and Rule C′′ are redundant.
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Q. Are

√
2 ·
√

3 and
√

6

the same, in view of the fact that 2 · 3 = 6 ?

— Yes, they are the same:

√
2 ·
√

3 =
√

6 .

Q. Are

3
√

5 · 3
√

7 and 3
√

35

the same, in view of the fact that 5 · 7 = 35 ?

— Yes, they are the same:

3
√

5 · 3
√

7 = 3
√

35 .

Q. Use Rule C
(

or Rule C′, or Rule C′′
)

to simplify

(1)
√

6 ·
√

11 . (2) 3
√

3 · 3
√

5 . (3) 4
√

2 · 4
√

5 · 4
√

13 .

(4) 5
√

2 · 5
√

3 · 5
√

4 · 5
√

5 .

— (1)
√

66 . (2) 3
√

15 . (3) 4
√

130 . (4) 5
√

120 .

Rule D. k

√

(

k
√

a

)n

= an .
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• §15. Fractional exponents.

Review. Adopting the following new notation is beneficial:

• Alternative Notation.

n

√

a = a

1

n .

Also, at this point we introduce

1

kDefinition. Define a

n

k as an

( )

.

By virtue of Rule D from §14, this is equivalent to the following:

Definition. Define a

n

k as

(

a

1

k

)n

.

• This way we have defined

ar where r is a rational number.

Now with this definition we can encaplsulate the above miscellaneous rules in a concise
form:

Rule I.
(

ab

)r

= ar br .

Rule II. ar as = ar+s
.

Rule III.
(

ar
)s

= ars .

Rule IV. a0 = 1 1r = 1, .

10



⋆ You might feel we should add the following to the above list

Rule I′′′.
(

abc

)r

= ar br cr,

Rule I′′′′′′.
(

abcd

)r

= ar br cr dr,

etc., but these are redundant.

As for why Rule II is true, let’s look at the following easy special case first:

a2 · a3 = a a a a a

= a5 ,

a3 · a4 = a a a a a a a

= a7 ,

and so on. You can extrapolate and conclude

an aℓ = an+ℓ

(

n, ℓ : positive integers
)

.

Now, Rule II asserts

ar as = ar+s

(

r, s : positive rational numbers
)

,

which is more general than the above. To see that the latter is indeed true, we first
test it by some concrete example. Suppose

r =
1

4
and s =

5

6
.

then
11



r =
1 · 3
4 · 3 =

3

12
and r =

5 · 2
6 · 2 =

10

12
.

Accordingly,

r + s =
3

12
+

10

12

=
3 + 10

12
=

13

12
.

Meanwhile,

ar as = a

3

12
a

10

12

=

(

a

1

12

)3 (

a

1

12

)10

.

At this point we treat a

1

12 as an individual number, call it b, so the above is

b3 b10 = b13.

Remember that b = a

1

12 , so this last outcome b13 becomes

(

a

1

12

)13

.

By definition, this equals

a

13

12 .

To conclude, ar as = ar+s is indeed true for r =
1

4
and s =

5

6
.
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It is now easy to take care of the case r and s are arbitrary positive rational
numbers, by generalizing the above argument. Namely, write r and s as

r =
n

k
, s =

ℓ

k
,

using appropriate positive integers n, ℓ and k, which is always feasible
(

common

denominator technique, see “Supplement”
)

. Then

ar as = a

n

k
a

ℓ

k

=

(

a

1

k

)n (

a

1

k

)ℓ

.

At this point we may treat a

1

k as an individual number, call it b, so the above
is

bn bℓ.

Here n and ℓ are positive integers, thus we previously saw that this equals

bn+ ℓ. Now, remember that b equals a

1

k , so

bn+ ℓ =

(

a

1

k

)n+ ℓ

= a

n+ ℓ

k

= a

n

k
+

ℓ

k .

This is nothing else but ar+ s. In short, ar as = ar+ s. This establishes

Rule II.
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⋆ Now, we may also highlight some variations of Rule II, such as

ar as at = ar+ s+ t,

ar as at au = ar+ s+ t+u,

etc., but these are redundant, just the same reason Rule I′, Rule I′′, etc. are
redundant. Indeed, these are immediate consequences of Rule II

(

apply Rule II

repeatedly
)

.

The above rules
(

Rules I–IV
)

are usually put together, and are referred to as the

exponential laws. So let me highlight them one more time:

Exponential Laws. Let r and s be positive rational numbers. Let a and b

be positive numbers
(

not necessarily rational numbers
)

. Then

Rule I.
(

ab

)r

= ar br
.

Rule II. ar as = ar+s
.

Rule III.
(

ar
)s

= ars .

Rule IV. a0 = 1 1r = 1, .

Q. Simplify

(1) 2

2

3 ·
( 3

2

)

2

3
. (2) 3

1

2 · 3
5

2 . (3)
(

23
)

1

4
.

(4) 1000. (5) 1

4

7 .

— (1) 3

2

3 . (2) 33 = 27. (3) 2

3

4 .

(4) 1. (5) 1.
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