Math 105 TOPICS IN MATHEMATICS STUDY GUIDE FOR MIDTERM EXAM - IC

March 9 (Mon), 2015
Instructor: Yasuyuki Kachi
Line \#: 52920.

- $\S 14 . \quad n$-th root. Fractional exponents.
- Recall

$$
\begin{aligned}
\sqrt[3]{0} & =0 \\
\sqrt[3]{1} & =1 \\
\sqrt[3]{8} & =2 \\
\sqrt[3]{27} & =3 \\
\sqrt[3]{64} & =4 \\
\sqrt[3]{125} & =5 \\
\sqrt[3]{216} & =6 \\
\sqrt[3]{343} & =7 \\
\sqrt[3]{512} & =8 \\
\sqrt[3]{729} & =9
\end{aligned}
$$

Q. $\quad \sqrt[3]{1000}=? \quad \sqrt[3]{1331}=? \quad \sqrt[3]{1728}=? \quad \sqrt[3]{4913}=$?

Consult the table below, if necessary.

x	10	11	12	13	14	15	16	17	18	19
x^{3}	1000	1331	1728	2197	2744	3375	4096	4913	5832	6859

$$
\begin{array}{llll}
\sqrt[3]{1000} & =10 . & & \text { Indeed, }
\end{array} \begin{array}{ll}
1000 & =10^{3} . \\
\sqrt[3]{1331} & =11 . \\
& \text { Indeed, }
\end{array} r 1331=11^{3} .
$$

So, in short:

But the real issue here is,

$$
\begin{array}{rrrrrr}
\sqrt[3]{2}=? & \sqrt[3]{3}=? & \sqrt[3]{4}=? & \sqrt[3]{5}=? & \sqrt[3]{6}=? & \sqrt[3]{7}=? \\
\sqrt[3]{9}=? & \sqrt[3]{10}=? & \sqrt[3]{11}=? & \sqrt[3]{12}=? & \sqrt[3]{13}=? & \sqrt[3]{14}=? \\
\sqrt[3]{15}=? & \sqrt[3]{16}=? & \sqrt[3]{17}=? & \sqrt[3]{18}=? & \sqrt[3]{19}=? & \sqrt[3]{20}=? \\
\sqrt[3]{21}=? & \sqrt[3]{22}=? & \sqrt[3]{23}=? & \sqrt[3]{24}=? & \sqrt[3]{25}=? & \sqrt[3]{26}=?
\end{array}
$$

etc. (as you can see, I excluded $\sqrt[3]{0}, \sqrt[3]{1}, \sqrt[3]{8}$ and $\sqrt[3]{27}$).

Review. What is $\sqrt[3]{2}$?
$\sqrt[3]{2}$ is a number whose cube equals 2. Namely:

$$
" x=\sqrt[3]{2} \xlongequal{\text { is a number satisfying }} x^{3}=2 .
$$

Here, we ask the same question as last time: "Does such a number exist?" The answer is, yes, such a number indeed exists. This is just like last time we asserted that $\sqrt{2}$ exists. How do we find $\sqrt[3]{2}$? We can heuristically pull the decimal expression of $\sqrt[3]{2}$ as follows:

0. Observe

$$
\begin{array}{lll}
1^{3}=1, & \longleftarrow \text { smaller than } 2 \\
2^{3}=8 . & \longleftarrow \text { bigger than } 2
\end{array}
$$

So $\sqrt[3]{2}$ must sit between 1 and 2 :

$$
1<\sqrt[3]{2}<2
$$

1. Observe

$$
\begin{array}{ll}
1.1^{3} & =1.331, \\
1.2^{3} & =1.728, \\
1.3^{3} & =2.197, \\
\longleftarrow & \longleftarrow \text { smaller than } 2 \\
\text { bigger than } 2
\end{array}
$$

So $\sqrt[3]{2}$ must sit between 1.2 and 1.3:

$$
1.2<\sqrt[3]{2}<1.3
$$

2. Observe

$$
\begin{array}{ll}
1.21^{3} & =1.771561, \\
1.22^{3} & =1.815848, \\
1.23^{3} & =1.860867, \\
1.24^{3} & =1.906624, \\
1.25^{3} & =1.953125, \\
1.26^{3} & =2.000376 . \\
\longleftarrow & \longleftarrow \text { smaller than } 2 \\
\text { bigger than } 2
\end{array}
$$

So $\sqrt[3]{2}$ must sit between 1.25 and 1.26 :

$$
1.25<\sqrt[3]{2}<1.26
$$

3. Observe

$$
\begin{aligned}
& 1.251^{3}=1.957816251, \\
& 1.252^{3}=1.962515008, \\
& 1.253^{3}=1.967221277, \\
& 1.254^{3}=1.971935064, \\
& 1.255^{3}=1.976656375, \\
& 1.256^{3}=1.981385216, \\
& 1.257^{3}=1.986121593, \\
& 1.258^{3}=1.990865512, \\
& 1.259^{3}=1.995616979, \\
& 1.260^{3}=2.000376000 . \\
& \longleftarrow \\
& \text { smaller than } 2
\end{aligned}
$$

So $\sqrt[3]{2}$ must sit between 1.259 and 1.260:

$$
1.259<\sqrt[3]{2}<1.260
$$

4. Observe

$$
\begin{array}{r}
1.2591^{3}=1.996092541071 \\
1.2592^{3}=1.996568178688 \\
1.2593^{3}=1.997043891857 \\
1.2594^{3}=1.997519680584 \\
1.2595^{3}=1.997995544875 \\
1.2596^{3}=1.998471484736 \\
1.2597^{3}=1.998947500173 \\
\end{array}
$$

$$
\begin{array}{lll}
1.2598^{3}=1.999423591192, & \\
1.2599^{3}=1.999899757799, & \longleftarrow \text { smaller than } 2 \\
1.2600^{3}=2.000376000000 . & \longleftarrow \text { bigger than } 2
\end{array}
$$

So $\sqrt[3]{2}$ must sit between 1.2599 and 1.2600 :

$$
1.2599<\sqrt[3]{2}<1.2600
$$

So

$$
\sqrt[3]{2}=1.2599 \ldots
$$

But of course this is endless. If you want to see more digits:

$$
\sqrt[3]{2}=1.2599210498948731647672106072782283505702514647015 \ldots
$$

Most importantly, the decimal expression of $\sqrt[3]{2}$ continues forever, it never ends.

As for this, there is an algorithm for cube-rooting similar to the one for squarerooting which we have practiced in $\S 12$. But we choose not to discuss that.

The decimal expressions of $\sqrt[3]{3}, \sqrt[3]{4}, \sqrt[3]{5}, \sqrt[3]{6}$, and $\sqrt[3]{7}$ (up to the first fifty digits under the decimal point):

$$
\begin{aligned}
& \sqrt[3]{3}=1.44224957030740838232163831078010958839186925349935 \ldots \\
& \sqrt[3]{4}=1.58740105196819947475170563927230826039149332789985 \ldots \\
& \sqrt[3]{5}=1.70997594667669698935310887254386010986805511054305 \ldots \\
& \sqrt[3]{6}=1.81712059283213965889121175632726050242821046314121 \ldots \\
& \sqrt[3]{7}=1.91293118277238910119911683954876028286243905034587 \ldots
\end{aligned}
$$

Review. Nothing stops us from considering the fourth-root, fifth-root, and so on so forth.

$$
\begin{aligned}
& " \sqrt{x=\sqrt[4]{2}} \xlongequal{\text { is a number satisfying }} x^{4}=2 . \\
& " \\
& \hline x=\sqrt[5]{3} \text {. } \\
& \hline \text { is a number satisfying } \\
& x^{5}=3
\end{aligned}
$$

More generally, for an arbitrary positive integer n, we may define the n-th root of a number.

Definition (n-th root).

Assume a is a positive number: $a>0$. (Here, we do not assume that a is an integer. For example, a can be e.) Also, let n be a positive integer. Then

$$
" x=\sqrt[n]{a} \xlongequal{\text { is a number satisfying }} \quad x^{n}=a \text {. }
$$

We call $\sqrt[n]{a}$ the n-th root of a.

The square-root, the cube-root, the fourth-root, the fifth-root, etc. are called

"radicals."

Also, the symbol $\sqrt[n]{ }$ is called the radical symbol, or just the radical.
$\star \quad$ So, for $n=2, \sqrt[n]{a}$ is $\sqrt[2]{a}$, and this is just the square-root of a. There is absolutely nothing wrong in writing the square-root of a as $\sqrt[2]{a}$, but it is customary that we allow ourselves to omit the tiny 2 in front of the radical symbol. So we usually write \sqrt{a} for $\sqrt[2]{a}$.

Rule A.

$$
\sqrt[n]{\sqrt[k]{a}}=\sqrt[n k]{a}
$$

Q. Can we simplify

$$
\sqrt{\sqrt{2}} \quad ?
$$

- Yes. $\sqrt[4]{2}$.
Q. Can we simplify

$$
\sqrt[3]{\sqrt{2}} \quad ?
$$

- Yes. $\sqrt[6]{2}$.
Q. Can we simplify

$$
\sqrt[4]{\sqrt[3]{2}} \quad ?
$$

- Yes. ${ }^{12} \sqrt{2}$.

Rule B.
$\sqrt[n k]{a^{n}}=\sqrt[k]{a}$.
Q. Simplify $\sqrt[4]{4}$.
$-\sqrt{2}$.
Q. Simplify $\sqrt[6]{25}$.
$-\sqrt[3]{5}$.
Q. Simplify $\sqrt[15]{27}$.
$-\sqrt[5]{3}$.
Q. Use Rule A to simplify
(1) $\sqrt[3]{\sqrt{6}}$.
(2) $\sqrt[4]{\sqrt[3]{10}}$.

- (1) $\sqrt[6]{6}$.
(2) $\sqrt[12]{10}$.
Q. Use Rule B to simplify
(1) $\sqrt[6]{125}$.
(2) $\sqrt[12]{343}$.
(3) $\sqrt[16]{256}$.
(4) $\sqrt[12]{81}$.
-

(1) $\sqrt{5}$.
(2) $\sqrt[4]{7}$.
(3) $\sqrt{2}$.
(4) $\sqrt[3]{3}$.

Rule C.

$$
(\sqrt[n]{a})(\sqrt[n]{b})=n \sqrt{a b}
$$

Rule \mathbf{C}^{\prime}.

$$
(\sqrt[n]{a})(\sqrt[n]{b})(\sqrt[n]{c})=\sqrt[n]{a b c}
$$

Rule $\mathbf{C}^{\prime \prime} . \quad(\sqrt[n]{a})(\sqrt[n]{b})(\sqrt[n]{c})(\sqrt[n]{d})=\sqrt[n]{a b c d}$.

* Rule C', and Rule C" follow from Rule C. To that extent we say that Rule C' and Rule $\mathrm{C}^{\prime \prime}$ are redundant.
Q. Are

$$
\sqrt{2} \cdot \sqrt{3} \quad \text { and } \quad \sqrt{6}
$$

the same, in view of the fact that $2 \cdot 3=6$?

- Yes, they are the same:

$$
\sqrt{2} \cdot \sqrt{3}=\sqrt{6} .
$$

Q. Are

$$
\sqrt[3]{5} \cdot \sqrt[3]{7} \text { and } \sqrt[3]{35}
$$

the same, in view of the fact that $5 \cdot 7=35$?

- Yes, they are the same:

$$
\sqrt[3]{5} \cdot \sqrt[3]{7}=\sqrt[3]{35}
$$

Q. Use Rule C (or Rule C^{\prime}, or Rule $\mathrm{C}^{\prime \prime}$) to simplify
(1) $\sqrt{6} \cdot \sqrt{11}$.
(2) $\sqrt[3]{3} \cdot \sqrt[3]{5}$.
(3) $\sqrt[4]{2} \cdot \sqrt[4]{5} \cdot \sqrt[4]{13}$.
(4) $\sqrt[5]{2} \cdot \sqrt[5]{3} \cdot \sqrt[5]{4} \cdot \sqrt[5]{5}$.

- (1) $\sqrt{66}$.
(2) $\sqrt[3]{15}$.
(3) $\sqrt[4]{130}$.
(4) $\sqrt[5]{120}$.

Rule D.

$$
(\sqrt[k]{a})^{n}=\sqrt[k]{a^{n}}
$$

- §15. Fractional exponents.

Review. Adopting the following new notation is beneficial:

- Alternative Notation.

$$
\sqrt[n]{a}=a^{\frac{1}{n}}
$$

Also, at this point we introduce

Definition. $\quad \underline{\underline{\text { Define }}} a^{\frac{n}{k}} \quad \underline{\underline{\text { as }}}\left(a^{n}\right)^{\frac{1}{k}}$.
By virtue of Rule D from $\S 14$, this is equivalent to the following:

Definition. $\quad \underline{\underline{\text { Define }}} a^{\frac{n}{k}} \quad \underline{\underline{\text { as }}}\left(a^{\frac{1}{k}}\right)^{n}$.

- This way we have defined

Now with this definition we can encaplsulate the above miscellaneous rules in a concise form:

Rule I.

$$
(a b)^{r}=a^{r} b^{r}
$$

Rule II.

$$
a^{r} a^{s}=a^{r+s}
$$

Rule III.

$$
\left(a^{r}\right)^{s}=a^{r s}
$$

Rule IV.

* You might feel we should add the following to the above list

Rule $\mathbf{I}^{\prime} . \quad(a b c)^{r}=a^{r} b^{r} c^{r}$,
Rule $I^{\prime \prime}$.

$$
(a b c d)^{r}=a^{r} b^{r} c^{r} d^{r}
$$

etc., but these are redundant.

As for why Rule II is true, let's look at the following easy special case first:

$$
\begin{aligned}
a^{2} \cdot a^{3} & =a a a a a \\
& =a^{5}, \\
a^{3} \cdot a^{4} & =a a a a a a a \\
& =a^{7},
\end{aligned}
$$

and so on. You can extrapolate and conclude

$$
a^{n} a^{\ell}=a^{n+\ell} \quad(n, \ell: \text { positive } \xlongequal{\text { integers }}) .
$$

Now, Rule II asserts

$$
a^{r} a^{s}=a^{r+s} \quad(r, s: \text { positive } \xlongequal{\text { rational numbers }}),
$$

which is more general than the above. To see that the latter is indeed true, we first test it by some concrete example. Suppose

$$
r=\frac{1}{4} \quad \text { and } \quad s=\frac{5}{6} .
$$

then

$$
r=\frac{1 \cdot 3}{4 \cdot 3}=\frac{3}{12} \quad \text { and } \quad r=\frac{5 \cdot 2}{6 \cdot 2}=\frac{10}{12} .
$$

Accordingly,

$$
\begin{aligned}
r+s & =\frac{3}{12}+\frac{10}{12} \\
& =\frac{3+10}{12}=\frac{13}{12} .
\end{aligned}
$$

Meanwhile,

$$
\begin{aligned}
a^{r} a^{s} & =a^{\frac{3}{12}} a^{\frac{10}{12}} \\
& =\left(a^{\frac{1}{12}}\right)^{3}\left(a^{\frac{1}{12}}\right)^{10} .
\end{aligned}
$$

At this point we treat $a^{\frac{1}{12}}$ as an individual number, call it b, so the above is

$$
b^{3} b^{10}=b^{13}
$$

Remember that $b=a^{\frac{1}{12}}, \quad$ so this last outcome b^{13} becomes

$$
\left(a^{\frac{1}{12}}\right)^{13}
$$

By definition, this equals

$$
a^{\frac{13}{12}}
$$

To conclude, $\quad a^{r} a^{s}=a^{r+s} \quad$ is indeed true for $r=\frac{1}{4}$ and $s=\frac{5}{6}$.

It is now easy to take care of the case r and s are arbitrary positive rational numbers, by generalizing the above argument. Namely, write r and s as

$$
r=\frac{n}{k}, \quad s=\frac{\ell}{k}
$$

using appropriate positive integers n, ℓ and k, which is always feasible (common denominator technique, see "Supplement"). Then

$$
\begin{aligned}
a^{r} a^{s} & =a^{\frac{n}{k}} a^{\frac{\ell}{k}} \\
& =\left(a^{\frac{1}{k}}\right)^{n}\left(a^{\frac{1}{k}}\right)^{\ell}
\end{aligned}
$$

At this point we may treat $a^{\frac{1}{k}}$ as an individual number, call it b, so the above is

$$
b^{n} b^{\ell}
$$

Here n and ℓ are positive integers, thus we previously saw that this equals $b^{n+\ell}$. Now, remember that b equals $a^{\frac{1}{k}}$, so

$$
\begin{aligned}
b^{n+\ell} & =\left(a^{\frac{1}{k}}\right)^{n+\ell} \\
& =a^{\frac{n+\ell}{k}} \\
& =a^{\frac{n}{k}+\frac{\ell}{k}}
\end{aligned}
$$

This is nothing else but a^{r+s}. In short, $a^{r} a^{s}=a^{r+s}$. This establishes Rule II.

* Now, we may also highlight some variations of Rule II, such as

$$
\begin{aligned}
a^{r} a^{s} a^{t} & =a^{r+s+t}, \\
a^{r} a^{s} a^{t} a^{u} & =a^{r+s+t+u},
\end{aligned}
$$

etc., but these are redundant, just the same reason Rule I^{\prime}, Rule $\mathrm{I}^{\prime \prime}$, etc. are redundant. Indeed, these are immediate consequences of Rule II (apply Rule II repeatedly).

The above rules (Rules I-IV) are usually put together, and are referred to as the $\underline{\text { exponential laws. So let me highlight them one more time: }}$

Exponential Laws. Let r and s be positive rational numbers. Let a and b be positive numbers (not necessarily rational numbers). Then

Rule I.

Rule II.

$$
(a b)^{r}=a^{r} b^{r}
$$

$$
a^{r} a^{s}=a^{r+s}
$$

Rule III.

Q. Simplify
(1) $2^{\frac{2}{3}} \cdot\left(\frac{3}{2}\right)^{\frac{2}{3}}$.
(2) $3^{\frac{1}{2}} \cdot 3^{\frac{5}{2}}$.
(3) $\quad\left(2^{3}\right)^{\frac{1}{4}}$.
(4) 100^{0}.
(5) $1^{\frac{4}{7}}$.
(1) $3^{\frac{2}{3}}$.
(2) $3^{3}=27$.
(3) $2^{\frac{3}{4}}$.
(4) 1 .

