
Math 105 TOPICS IN MATHEMATICS

STUDY GUIDE FOR MIDTERM EXAM – IB

March 6 (Fri), 2015

Instructor: Yasuyuki Kachi

Line #: 52920.

• §8 continued.

• Review — Fermat Primes, Mersenne Primes.

Recall that 2-to-the-powers are

21 = 2,

22 = 4,

23 = 8,

24 = 16,

25 = 32,

26 = 64,

27 = 128,

28 = 256,

29 = 512,

210 = 1024,

211 = 2048,

212 = 4096,

213 = 8192,

214 = 16384,

215 = 32768,

216 = 65536,

· ·
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· ·· ·
While these seemingly have nothing to do with the prime numbers, adding 1 to,

or subtracting 1 from, those suddenly have a bearing on the business of the mystery
of primes.

Q. What is the definition of Fermat number ?

— A number of the form

2n + 1 n: a positive integer,

is called a Fermat number .

Q. What is the definition of a Fermat prime ?

— A Fermat number which is a prime number is called a Fermat prime .

Q. What is the definition of Mersenne number ?

— A number of the form

2n − 1 n: a positive integer,

is called a Mersenne umber .

Q. What is the definition of a Mersenne prime ?

— A Mersenne number which is a prime number is called a Mersenne prime .

Q. True or false: There are infinitely many prime numbers.

— True.

Q. Who proved it?
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— Euclid.

Review continued. That does not mean that we
(

humans on this planet
)

have
a list that contains infinitely many concrete examples of primes. In fact, no one has.

There is such a thing called ‘the largest known prime’.

Q. What does ‘the largest known prime’ exactly mean?

— Somebody has offered one particular number
(

a positive integer
)

, a very very
large number, and has mathematically proved that it is indeed a prime. Moreover,
no one has offered another, larger, number and has mathematically proved that it is
a prime.

Review continued. People are working on getting hold of larger and larger
primes. So, the largetst known prime today may not be the largetst known prime
tomorrow.

Q. True or false: For each given prime p, we, human being, do not know of a
concrete formula for the next prime, or not even a formula that generates any prime
larger than p.

— True.

Q. True or false: Somewhere out in the universe, there is a planet where there
is an intelligence, something like us, humans, live there, and they do know such a
formula.

— Who knows.

Review continued. Now, the largest known primes are ‘typically’ a Mersenne
prime. That’s one reason why Mersenne primes draw public attention. Meanwhile,
Fermat primes, “kissing cousins” of Mersenne primes, are of special interest after the
striking discovery by a mathematician named Gauss.
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Q. What exactly is Gauss’ discovery pertaining to Fermat primes?

— If N is a Fermat prime, then a regular polygon with N edges is drawn only
using straightedge and compass. In particular, a regular heptadecagon

(

= a regular

17-gon
)

can be drawn only with straightedge and compass.

Q. Define ‘regular n-gon’.

— Regular N -gon is a figure inscribed in a circle that has N straight edges and N

vertices, and those N vertices are evenly distributed on the perimeter of the circle.

Review continued. Here, please don’t dismiss it by saying “computers can draw
just about any of those figures”. There is a precise mathematical meaning attached
to the expression “something can be drawn only with straightedge and compass.”
When I talk about drawings of figures, what you are thinking is either an ink spead
on a sheet or a collection of dots, or ‘pixels’, in case it is digitally drawn. But every
stroke has thickness, no matter how thin it is, just that the thickness is thin enough
so from a distance it looks like lines and circles but they are actually ‘bands’, and
moreover the width of the bands is not exactly even, if you care to use a microscope to
magnify it, partially because the surface of the paper

(

or LCD screen
)

is not exactly
even or flat. But we draw figures in math classes, and our stance is we ‘pretend ’ that
those strokes have no width.

In that sense, yes, of course, your computer can draw an ‘approximate’ figure within
the margin of the thickness of a stroke. But what I am talking about is something else.
In mathematics, a statement “such and such polygon is drawn only with straightedge
and compass” means that the pair of numbers that pinpoint the location of any of
its vertices relative to the origin of the coordinate

(

the coordinate readings of the

referenced vertex
)

both belong to a sequence of numbers where each member in that
sequence arises as a root of a certain quadratic equation whose coefficients reside
in a ‘field generated by’ the previous member of the same sequence, where a field
generated by a certain number means the smallest number system that contains that
number and all integers that is closed under addition, subtraction, multiplication, and
division. So, in the context of feasibility of drawing figures, the computer’s drawing
ability is irrelevant.

Q. True or false: Certain regular polygons are mathematically proved to be im-
possible to be drawn only using straightedge and compass, comforming to the above
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definition. Also, if ‘true’, then give an example.

— True. Regular heptagons
(

= 7-gons
)

cannot be drawn only using straightedge
and compass.

Review continued. The following are open questions
(

as in nobody has either

proved or disproved them yet
)

:

(Open) Question 1. Are there infinitely many Fermat primes?

(Open) Question 2. Are there infinitely many Mersenne primes?

Q. In order for a Fermat number 2n + 1 to be a prime, n has to be what?

— n has to be a 2-to-the-power itself.

Q. Among the following Fermat numbers, which one
(

s
)

is
/

are Fermat prime
(

s
)

?

F1 = 22
1

+ 1 = 22 + 1 = 5,

F2 = 22
2

+ 1 = 24 + 1 = 17,

F3 = 22
3

+ 1 = 28 + 1 = 257,

F4 = 22
4

+ 1 = 216 + 1 = 65537, and

F5 = 22
5

+ 1 = 232 + 1 = 4294967297.

— F1, F2, F3 and F4 are Fermat primes. F5 is not a Fermat prime, because

4294967297 = 641 · 6700417.

Q. Who gave this factorization?

— Euler.

Review continued. Now, today with all the modern computer technology, all
Fks up to F42 are computed, and it is verified that none of them except the first
four: F1, F2, F3, and F4, are primes. To this day no one knows if there is a Fermat
prime other than F1, F2, F3, and F4.

5



Q. In order for a Mersenne number 2n − 1 to be a prime, n has to be what?

— n has to be a prime itself.

Q. True or false: If p is a prime, then 2p − 1 is a Mersenne prime. If false,
then give a counterexample.

— False. Indeed, 211 − 1 = 2047 = 23 · 89.

Review continued. This is why Question 2 “Are there infinitely many Mersenne
primes?” makes sense. Here is the ‘largest known prime’, as of December, 2014,
which happens to be a Mersenne prime:

57885161
2 - 1.

This is a number that carries 17425170 digits.
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• §9. Binomial expansions.

Review. Binomial Formula. Let n be a positive integer. Then

(

x+y
)n

=

(

n

0

)

xn +

(

n

1

)

xn−1y +

(

n

2

)

xn−2y2 +

(

n

3

)

xn−3y3 + ···

+

(

n

n−3

)

x3 yn−3 +

(

n

n−2

)

x2 yn−2 +

(

n

n−1

)

x yn−1 +

(

n

n

)

yn.

For n = 1, 2, 3, 4, 5 and 6, this is

(1)
(

x + y
)1

=

(

1

0

)

x +

(

1

1

)

y,

(2)
(

x + y
)2

=

(

2

0

)

x2 +

(

2

1

)

x y +

(

2

2

)

y2,

(3)
(

x + y
)3

=

(

3

0

)

x3 +

(

3

1

)

x2 y +

(

3

2

)

x y2 +

(

3

3

)

y3,

(4)
(

x + y
)4

=

(

4

0

)

x4 +

(

4

1

)

x3 y +

(

4

2

)

x2 y2 +

(

4

3

)

x y3 +

(

4

4

)

y4,

(5)
(

x + y
)5

=

(

5

0

)

x5 +

(

5

1

)

x4 y +

(

5

2

)

x3 y2 +

(

5

3

)

x2 y3 +

(

5

4

)

x y4 +

(

5

5

)

y5,

(6)
(

x + y
)6

=

(

6

0

)

x6 +

(

6

1

)

x5 y +

(

6

2

)

x4 y2 +

(

6

3

)

x3 y3 +

(

6

4

)

x2 y4

+

(

6

5

)

x y5 +

(

6

6

)

y6.
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Q. Throw actual numbers in the binomial coefficients in the above (1)–(6).

— (1)
(

x + y
)1

= x + y,

(2)
(

x + y
)2

= x2 + 2 x y + y2,

(3)
(

x + y
)3

= x3 + 3 x2 y + 3 x y2 + y3,

(4)
(

x + y
)4

= x4 + 4 x3 y + 6 x2 y2 + 4 x y3 + y4,

(5)
(

x + y
)5

= x5 + 5 x4 y + 10 x3 y2 + 10 x2 y3 + 5 x y4 + y5,

(6)
(

x + y
)6

= x6 + 6 x5 y + 15 x4 y2 + 20 x3 y3 + 15 x2 y4 + 6 x y5 + y6,

Q. Substitute y = 1 in the above (1)–(6).

— (1)
(

x + 1
)1

= x + 1,

(2)
(

x + 1
)2

= x2 + 2 x + 1,

(3)
(

x + 1
)3

= x3 + 3 x2 + 3 x + 1,

(4)
(

x + 1
)4

= x4 + 4 x3 + 6 x2 + 4 x + 1,

(5)
(

x + 1
)5

= x5 + 5 x4 + 10 x3 + 10 x2 + 5 x + 1,

(6)
(

x + 1
)6

= x6 + 6 x5 + 15 x4 + 20 x3 + 15 x2 + 6 x + 1.
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Q. Substitute y = 2 in the above (1)–(6).

— (1)
(

x + 2
)1

= x + 2,

(2)
(

x + 2
)2

= x2 + 2 · x · 2 + 22

= x2 + 4 x + 4,

(3)
(

x + 2
)3

= x3 + 3 · x2 · 2 + 3 · x · 22 + 23

= x3 + 6 x2 + 12 x + 8,

(4)
(

x + 2
)4

= x4 + 4 · x3 · 2 + 6 · x2 · 22 + 4 · x · 23 + 24

= x4 + 8 x3 + 24 x2 + 32 x + 16,

(5)
(

x+ 2
)5

= x5 + 5 ·x4 ·2 + 10 ·x3 ·22 + 10 ·x2 ·23 + 5 ·x ·24 + 25

= x5 + 10 x4 + 40 x3 + 80 x2 + 80 x + 32,

(6)
(

x + 2
)6

= x6 + 6 ·x4 ·2 + 15 ·x4 ·22 + 20 ·x3 ·23 + 15 ·x2 ·24

+ 6 · x · 25 + 26

= x6 + 12 x5 + 60 x4 + 160 x3 + 240 x2 + 192 x + 64.
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Q. Substitute y = −1 in the above (1)–(6).

— (1)
(

x − 1
)1

= x − 1,

(2)
(

x − 1
)2

= x2 − 2 x + 1,

(3)
(

x − 1
)3

= x3 − 3 x2 + 3 x − 1,

(4)
(

x − 1
)4

= x4 − 4 x3 + 6 x2 − 4 x + 1,

(5)
(

x − 1
)5

= x5 − 5 x4 + 10 x3 − 10 x2 + 5 x − 1,

(6)
(

x − 1
)6

= x6 − 6 x5 + 15 x4 − 20 x3 + 15 x2 − 6 x + 1.

Q. Substitute y = −2 in the above (1)–(6).

— (1)
(

x − 2
)1

= x − 2,

(2)
(

x − 2
)2

= x2 − 4 x + 4,

(3)
(

x − 2
)3

= x3 − 6 x2 + 12 x − 8,

(4)
(

x − 2
)4

= x4 − 8 x3 + 24 x2 − 32 x + 16,

(5)
(

x − 2
)5

= x5 − 10 x4 + 40 x3 − 80 x2 + 80 x − 32,

(6)
(

x− 2
)6

= x6 − 12 x5 + 60 x4 − 160 x3 + 240 x2 − 192 x + 64.

10



Q. Expand each of

(

x + 7
)2

.
(

x + 6
)3

.
(

x + 3
)4

.
(

x + 1
)6

.

(

x − 2
)2

.
(

x − 4
)4

.
(

x − 3
)5

.
(

x − 1
)7

.

—
(

x + 7
)2

= x2 + 14 x + 49.

(

x + 6
)3

= x3 + 18 x2 + 108 x + 216.

(

x + 3
)4

= x4 + 12 x3 + 54 x2 + 108 x + 81.

(

x + 1
)6

= x6 + 6 x5 + 15 x4 + 20 x3 + 15 x2 + 6 x + 1.

(

x − 2
)2

= x2 − 4 x + 4.

(

x − 4
)4

= x4 − 16 x3 + 96 x2 − 256 x + 256.

(

x − 3
)5

= x5 − 15 x4 + 90 x3 − 270 x2 + 405 x − 243.

(

x − 1
)7

= x7 − 7 x6 + 21 x5 − 35 x4 + 35 x3 − 21 x2 + 7 x − 1.
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• §10. e. Intro.

Review. “Not for nothing”, let’s “compare”

(1)

(

1+
1

1

)1

,

(2)

(

1+
1

2

)2

,

(3)

(

1+
1

3

)3

,

(4)

(

1+
1

4

)4

,

(5)

(

1+
1

5

)5

,

···
In decimals, these are

(1) 2 ,

(2) 1.5 · 1.5 ,

(3)
(

1.333333...
)

·
(

1.333333...
)

·
(

1.333333...
)

,

(4) 1.25 · 1.25 · 1.25 · 1.25 , and

(5) 1.2 · 1.2 · 1.2 · 1.2 · 1.2 .
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Which one is the smallest? Which one is the largest? No calculators. Indeed, in the
same context you will soon encounter something that will ultimately make you think
twice about an indiscriminate use of calculators. Now, recall

102 = 10 · 10 = 100
(

one hundred
)

.

103 = 10 · 10 · 10 = 1000
(

one thousand
)

.

104 = 10 · 10 · 10 · 10 = 10000
(

ten thousand
)

.

105 = 10 · 10 · 10 · 10 · 10 = 100000
(

one hundred thousand
)

.

106 = 10 · 10 · 10 · 10 · 10 · 10 = 1000000
(

one million
)

.

107 = 10 · 10 · 10 · 10 · 10 · 10 · 10 = 10000000
(

ten million
)

.

108 = 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 = 100000000
(

one hundred million
)

.

109 = 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 = 1000000000
(

one billion
)

.

1010 = 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 = 10000000000
(

ten billion
)

.

1011 = 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 = 100000000000
(

one hundred billion
)

.

1012 = 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 = 1000000000000
(

one trillion
)

.

· · ·· · ·· · ·

◦ More generally, for a positive integer n,

n
10 = 1 0 0 0 0 0 0. . .

x yn
.
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Now, trusting the calculator to do the following will be ill-advised:

(103)

(

1+
1

103

)103

,

(106)

(

1+
1

106

)106

,

(109)

(

1+
1

109

)109

,

(1012)

(

1+
1

1012

)1012

,

(1015)

(

1+
1

1015

)1015

,

(1018)

(

1+
1

1018

)1018

,

···
Indeed, one of our designated calculator models gives

(103) 2.7169..,

(106) 2.7182804..,

(109) 2.718281827..,

(1012) 2.718281828..,

(1015) 1,

(1018) 1,

(

In other models too ‘1’ starts to show up, though where exactly depends.
)
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The answers for part (1015) and part (1018) are inaccurate
(

way off the mark
)

.

Part (1015) should be a tiny bit bigger than part (1012); part (1018) should be a tiny
tiny bit bigger than part (1015), and so on. And this trend continues for forever.
Your calculator rounds numbers where it shouldn’t, and sometimes that leads to an
error. Below is an absolutely irrefutable logic to validate my claim. For the sake of
illustration, let’s dissect part (5):

(5)

(

1+
1

5

)5

=

(

5

0

)

· 15

+

(

5

1

)

· 14 ·
(

1

5

)

+

(

5

2

)

· 13 ·
(

1

5

)2

+

(

5

3

)

· 12 ·
(

1

5

)3

+

(

5

4

)

· 1 ·
(

1

5

)4

+

(

5

5

)

·
(

1

5

)5

= 1

+
1

1
· 5

5

+
1

1 · 2 · 5

5
· 4

5

+
1

1 · 2 · 3 · 5

5
· 4

5
· 3

5

+
1

1 · 2 · 3 · 4 · 5

5
· 4

5
· 3

5
· 2

5

+
1

1 · 2 · 3 · 4 · 5 · 5

5
· 4

5
· 3

5
· 2

5
· 1

5
.

15



In short,part (5) equals

1

+
1

1
· 5

5

+
1

1 · 2 · 5

5
· 4

5

+
1

1 · 2 · 3 · 5

5
· 4

5
· 3

5

+
1

1 · 2 · 3 · 4 · 5

5
· 4

5
· 3

5
· 2

5

+
1

1 · 2 · 3 · 4 · 5 · 5

5
· 4

5
· 3

5
· 2

5
· 1

5
.

(term 5-0)

(term 5-1)

(term 5-2)

(term 5-3)

(term 5-4)

(term 5-5)

Similarly, part (6) equals

1

+
1

1
· 6

6

+
1

1 · 2 · 6

6
· 5

6

+
1

1 · 2 · 3 · 6

6
· 5

6
· 4

6

+
1

1 · 2 · 3 · 4 · 6

6
· 5

6
· 4

6
· 3

6

+
1

1 · 2 · 3 · 4 · 5 · 6

6
· 5

6
· 4

6
· 3

6
· 2

6

+
1

1 · 2 · 3 · 4 · 5 · 6 · 6

6
· 5

6
· 4

6
· 3

6
· 2

6
· 1

6
.

(term 6-0)

(term 6-1)

(term 6-2)

(term 6-3)

(term 6-4)

(term 6-5)

(term 6-6)
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Now, I contend

(term 5-0) = (term 6-0),

(term 5-1) = (term 6-1),

(term 5-2) < (term 6-2),

(term 5-3) < (term 6-3),

(term 5-4) < (term 6-4),

(term 5-5) < (term 6-5).

Indeed, these are just

1 = 1 ,

1

1
· 5

5
=

1

1
· 6

6
,

1

1 ·2 · 5

5
· 4

5
<

1

1 ·2 · 6

6
· 5

6
,

1

1 ·2 ·3 · 5

5
· 4

5
· 3

5
<

1

1 ·2 ·3 · 6

6
· 5

6
· 4

6
,

1

1 ·2 ·3 ·4 · 5

5
· 4

5
· 3

5
· 2

5
<

1

1 ·2 ·3 ·4 · 6

6
· 5

6
· 4

6
· 3

6
,

1

1 ·2 ·3 ·4 ·5 ·
5

5
· 4

5
· 3

5
· 2

5
· 1

5
<

1

1 ·2 ·3 ·4 ·5 ·
6

6
· 5

6
· 4

6
· 3

6
· 2

6
,

which are all true. In the above, (term 6-6) was not involved, but we can see that
(term 6-6) is bigger than 0. So, in sum:

17



(term 5-0) = (term 6-0)

(term 5-1) = (term 6-1)

(term 5-2) < (term 6-2)

(term 5-3) < (term 6-3)

(term 5-4) < (term 6-4)

(term 5-5) < (term 6-5)

0 < (term 6-6)+)

part (5) < part (6)

So, to conclude, part (6) is bigger than part (5):

(5)

(

1+
1

5

)5

, and

(6)

(

1+
1

6

)6

,

To write this as an inequality:

(

1+
1

5

)5

<

(

1+
1

6

)6

.

I didn’t use a calculator.

If you employ the same logic as above, use Binomial Formula, then you will arrive
at the conclusion part (7) is bigger than part (6); part (8) is bigger than part (7),
and so on. More generally, part (n+1) is bigger than part (n).

• So, the calculator did wrong. Mathematical computer software is more reliable,
and it gives us
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(103) 2.7169239322358924573830881219475771...

(106) 2.7182804693193768838197997084543563...

(109) 2.7182818270999043223766440238603328...

(1012) 2.7182818284576860944460591946141537...

(1015) 2.7182818284590438762193732418312906...

(1018) 2.7182818284590452340011465571231398...

(1021) 2.7182818284590452353589283304384329...

(1024) 2.7182818284590452353602861122117482...

(1027) 2.7182818284590452353602874699935215...

(1030) 2.7182818284590452353602874713513033...

The list indicates that the figures will not grow arbitrarily large, but will get
stagnant. Indeed, one can theoretically prove

Claim. The numbers

(n)

(

1+
1

n

)n

,

n = 1, 2, 3, 4, 5, · · · , cannot become arbitrarily large. Indeed, the digit before the
decimal point in the decimal expression of each of these numbers is 2. In other
words, these numbers are all less than 3.
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• §11. e. Continued.

Review. There is a way to give a mathematical reasoning why the above claim
is true. But first a real life example. Before everything, in the following ‘Metaphor’,
we relax the smallest currency unit, meaning: In reality, we cannot divide one cent.
But here we work on a model where one can divide any dollar amount by any large
number

(

integer
)

. Also, we never round figures. So, one-third of a dollar is never

the same as 33 cents
(

because 33 cents is one-third of 99 cents
)

.

Metaphor. Now, you open a bank account, deposit a dollar in that account. Your
bank offers 10 percent interest annually. After one year, your balance is a dollar and
ten cents. But suppose another bank offers 100 percent interest annually. Then you
probably want to forget the first bank and rush to the second bank, right? So you
actually went to the second bank, with 100 percent annual interest rate. There you
opened a bank account, and deposited a dollar in that account. Then after one year
your balance is two dollars. A much better deal.

Intermission. As a matter of fact, with any interest rate the gist of what I am
going to show you is the same. The difference is a constant multiplication in the
exponent. Having or not having that constant is mathematically insubstantial. With
the 100 percent rate we can make that constant 1. The general case is a simple
tweak of it. So let’s stick with the second bank with 100 percent interest.

Metaphor resumed. Now, in the second bank, with 100 percent interest, you
never withdraw money, or make additional deposit. You just let your money sit there.
After the first year, the balance is two dollars, of which one dollar is accrued as an
interest. After the second year, should the balance be how much?

If you say three dollars, then that’s correct, if there is no compounding interest. If
you say four dollars, then that’s correct too, the interest is compounded.

So, both are correct. From now on we only focus on compound interest. So,
suppose the second bank offers a compound interest with 100 percent interest rate
annually. But then there is a third bank, a competitor, that advertises as follows:
They offer the same interest rate of 100 percent annually, but they calculate the
intest more frequently than once a year, namely, twice a year.
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Don’t be misled: What the third bank is not saying is they offer 100 percent
interest semi-anunally, so your money would grow like after six months what was
originally a dollar would grow into two dollars, and then after another six months
that two dollars would further grow into four dollars, and so on. That’s not what
they are advertising. Rather, they keep the 100 percent annual interest rate, but the
100 percent annual rate translates to 50 percent semi-annual interest rate. But if
compounding takes place semi-annually with that rate, that’s a better deal than the
100 percent annual interest rate with compounding taking place just annually. Are
you following me? Let’s mathematically dissect.

◦ With the second bank
(

annual interest rate is 100 percent, compounded

annually
)

, after 1 year your balance is

$
(

1+1
)

.

◦ With the third bank
(

annual interest rate is 100 percent, compounded

semi-annually
)

, after
1

2
year your balance is

$
(

1+
1

2

)

,

and after 1 year it is

$
(

1+
1

2

)2

.

Now, there is a fourth bank, that tries to outplay the third bank, and they advertise
the 100 percent annual interest rate, which itself is the same, but they compound the

interest three times a year, each time applying
1

3
of 100 percent rate. Then

◦ With the fourth bank, your balance after
1

3
year is

$
(

1+
1

3

)

,
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after
2

3
year it is

$
(

1+
1

3

)2

,

and after 1 year it is

$
(

1+
1

3

)3

.

Now, there is a fifth bank, that tries to outplay the fourth bank, and they advertise
the 100 percent annual interest rate, which itself is the same, but they compound the

interest quarter-annually
(

four times a year
)

, each time applies
1

4
of 100 percent

interest rate. Then

◦ With the fifth bank, your balance after
1

4
year is

$
(

1+
1

4

)

,

after
2

4
year it is

$
(

1+
1

4

)2

,

after
3

4
year it is

$
(

1+
1

4

)3

,

and after 1 year it is

$
(

1+
1

4

)4

.
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And so on so forth. At this point, let’s just focus on the balance after one year, in
each scenario

(

with each of the second through the fifth banks
)

. With a dollar of a
deposit, with 100 percent annual interest rate, and the compounding takes place n

times a year, with n = 1, 2, 3 and 4, the balance is

$
(

1+1
)1

,

$
(

1+
1

2

)2

,

$
(

1+
1

3

)3

,

and

$
(

1+
1

4

)4

,

respectively. We have mathematically verified that this is an increasing sequence. In
other words, the higher the compounding frequency is, the more additional benefit
you receive. But here, the real question is, as we increase the compounding frequency,
does the benefit increase unlimitedly?

The answer is ‘no’. The additional gain will ultimately diminish as you keep
increasing the compounding frequency. This is exactly the claim we are making

(

at

the end of §9 and at the beginning of §10
)

. Below is how we mathematically verify
the claim.

Recall that

(

1+
1

5

)5

equals the following quantity:

23



1

+
1

1
· 5

5
x y
‖
©1

+
1

1 · 2 · 5

5
· 4

5
x y

‖
©2

+
1

1 · 2 · 3 · 5

5
· 4

5
· 3

5
x y

‖
©3

+
1

1 · 2 · 3 · 4 · 5

5
· 4

5
· 3

5
· 2

5
x y

‖
©4

+
1

1 · 2 · 3 · 4 · 5 · 5

5
· 4

5
· 3

5
· 2

5
· 1

5
.

x y
‖
©5

1But if you look at the portion underlined, they are all less than 1, except © equals
1:

5

5
= 1,

5

5
· 4

5
< 1,

5

5
· 4

5
· 3

5
< 1,
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5

5
· 4

5
· 3

5
· 2

5
< 1,

5

5
· 4

5
· 3

5
· 2

5
· 1

5
< 1

(

see “Review of Lectures – X Supplement”
)

. So, if you replace the underlined parts

with 1, then the resulting quantity becomes bigger
(

once again, see “Review of

Lectures – X Supplement”
)

. In short,

(

1+
1

5

)5

< 1 +
1

1
+

1

1 · 2 +
1

1 · 2 · 3 +
1

1 · 2 · 3 · 4 +
1

1 · 2 · 3 · 4 · 5 .

Now, if you further compare this latter quantity with

1 +
1

1
+

1

1 · 2 +
1

1 · 2 · 2 +
1

1 · 2 · 2 · 2 +
1

1 · 2 · 2 · 2 · 2

= 1 + 1 +
1

2
+

1

22
+

1

23
+

1

24
,

then this last quantity 1 + 1 +
1

2
+

1

22
+

1

23
+

1

24
is clearly bigger. Now,

we know the fact that this last quantity 1+ 1+
1

2
+

1

22
+

1

23
+

1

24
is

1

24
short of 3.

So, in short,

(

1+
1

5

)5

< 3.
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The same argument works for

(n)

(

1+
1

n

)n

,

with any n. In sum, we draw the following conclusion:

Conclusion. For an arbitrary positive integer n = 1, 2, 3, 4, ··· ,

(

1+
1

n

)n

< 3.

• The next question is to identify the ‘limit’ of these numbers. Namely, we are going
to figure out the balance after one year with “continuous” compounding, namely, the
frequency of compounding n approaches to infinity.
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• §12. Factorials. Definition of e.

Review. Recall

1! = 1,

2! = 2 · 1,

3! = 3 · 2 · 1,

4! = 4 · 3 · 2 · 1,

5! = 5 · 4 · 3 · 2 · 1,

6! = 6 · 5 · 4 · 3 · 2 · 1,

7! = 7 · 6 · 5 · 4 · 3 · 2 · 1,

8! = 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1,

9! = 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1,

10! =10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1,
· ·· ·· ·

Pronunciation:

1 ! = “one factorial”,

2 ! = “two factorial”,

3 ! = “three factorial”,

4 ! = “four factorial”,

5 ! = “five factorial”,

6 ! = “six factorial”,

7 ! = “seven factorial”,

8 ! = “eight factorial”,

9 ! = “nine factorial”.

10 ! = “ten factorial”.
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Q. How to pronounce 20 ! ? Can you spell that out?

— 20 ! = 20 · 19 · 18 · 17 · 16 · 15 · 14 · 13 · 12 · 11
· 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 .

The actual figure:

20 ! = 20 · 19 · 18 · 17 · 16 · 15 · 14 · 13 · 12 · 11
· 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1

= 2432902008176640000.

This one you can do by hand.

So, as you can imagine, the sequence of factorial numbers grow very rapidly. To
use a real life example:

Q. You started a lemonade business. Words spread fast and the sales dramati-
cally increased

(

Table 1 below
)

:

day

∣

∣

∣

∣

$

1

∣

∣

∣

∣

∣

∣

∣

∣

1

2

∣

∣

∣

∣

∣

∣

∣

∣

2

3

∣

∣

∣

∣

∣

∣

∣

∣

6

4

∣

∣

∣

∣

∣

∣

∣

∣

24

5

∣

∣

∣

∣

∣

∣

∣

∣

120

6

∣

∣

∣

∣

∣

∣

∣

∣

720

...
...

On Day n, your sales will be n times the previous day sales. Suppose the same
patterns hold until Day 50. Then the sales on Day 50 is how much?
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— The dollar amount of the sales on Day n is n !
(

“n factorial”
)

. So the dollar

amount of the sales on Day 50 is exactly 50!
(

“fifty factorial”
)

:

50 ! = 50 · 49 · 48 · 47 · 46 · 45 · 44 · 43 · 42 · 41
· 40 · 39 · 38 · 37 · 36 · 35 · 34 · 33 · 32 · 31
· 30 · 29 · 28 · 27 · 26 · 25 · 24 · 23 · 22 · 21
· 20 · 19 · 18 · 17 · 16 · 15 · 14 · 13 · 12 · 11
· 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 .

Review. The actual figure of this number is as follows
(

computer aided
)

:

50! = 30414093201713378043612608166064768844377641568960512000000000000.

This is a 64-digit number.

Q. Is it the case that the numbers like 1000000!, and 1000000000!, your computer
can spit out the exact answers?

— No, because the number of digits are astronomical, so it is not possible to display
on the screen the entire answer. Your computer still provides ball-park figures.

Q. How do computer calculate those ballpark figures of large number factorials?

— The moment it recognizes the problem, it immediately says to itself “forget
brute-force calculation”, to multiply 1 through one million

(

one billion, ...
)

. But
then it quickly identifies the theorem pre-installed that helps computing the figure
with the least amount of calculations.

Review. That theorem itself is actually old, was devised around 1730. So, there is
actually some “theory behind computing factorials”. We will cover this in the second
half of the semester. That has to do with the coverage of the rest of this section: the
behavior of

(

1+
1

n

)n

; n = 1, 2, 3, 4, 5, ···
29



as n grows larger. We already know two things about this sequence. (a) This is an
increasing sequence. (b) No matter how large n is, the number cannot exceed 3.
Here, we are not abruptly changing the subject, from factorials to somethign else.
The following simple observation is actually very helpful toward our goal:

“ When you write a binomial coefficient in a fraction form, the

denominator is a factorial number. ”

Example.

(

7

3

)

=
7 · 6 · 5
1 · 2 · 3 =

7 · 6 · 5
3!

.

Q. Write out each of

(

9

5

)

, and

(

10

4

)

in a similar fashion.

—

(

9

5

)

=
9 · 8 · 7 · 6 · 5
1 · 2 · 3 · 4 · 5 =

9 · 8 · 7 · 6 · 5
5!

,

(

10

4

)

=
10 · 9 · 8 · 7
1 · 2 · 3 · 4 =

10 · 9 · 8 · 7
4!

.

A general formula is

• Binomial coefficients expressed in terms of factorials — I.

Let n and k be integers, with 0 < k < n. Then the binomial coefficient
(

n

k

)

is written as

(

n

k

)

=
n

(

n−1
) (

n−2
)

···
(

n−k+1
)

k ! .

Now, let’s incorporate this perspective with what we did earlier. With the factorial
symbol, what we have worked out in §10 is paraphrased as
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(5)

(

1+
1

5

)5

= 1

+
1

1!
· 5

5

+
1

2!
· 5

5
· 4

5

+
1

3!
· 5

5
· 4

5
· 3

5

+
1

4!
· 5

5
· 4

5
· 3

5
· 2

5

+
1

5!
· 5

5
· 4

5
· 3

5
· 2

5
· 1

5
.

(term 5-0)

(term 5-1)

(term 5-2)

(term 5-3)

(term 5-4)

(term 5-5)
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What’s clear is

Fact A-5.

(

1+
1

5

)5

< 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
.

Similarly,

(6)

(

1+
1

6

)6

= 1

+
1

1!
· 6

6

+
1

2!
· 6

6
· 5

6

+
1

3!
· 6

6
· 5

6
· 4

6

+
1

4!
· 6

6
· 5

6
· 4

6
· 3

6

+
1

5!
· 6

6
· 5

6
· 4

6
· 3

6
· 2

6

+
1

6!
· 6

6
· 5

6
· 4

6
· 3

6
· 2

6
· 1

6

(term 6-0)

(term 6-1)

(term 6-2)

(term 6-3)

(term 6-4)

(term 6-5)

(term 6-6)

What’s clear is

Fact A-6.

(

1+
1

6

)6

< 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
.

On the other hand,
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(7)

(

1+
1

7

)7

= 1

+
1

1!
· 7

7

+
1

2!
· 7

7
· 6

7

+
1

3!
· 7

7
· 6

7
· 5

7

+
1

4!
· 7

7
· 6

7
· 5

7
· 4

7

+
1

5!
· 7

7
· 6

7
· 5

7
· 4

7
· 3

7

+
1

6!
· 7

7
· 6

7
· 5

7
· 4

7
· 3

7
· 2

7

(term 7-0)

(term 7-1)

(term 7-2)

(term 7-3)

(term 7-4)

(term 7-5)

(term 7-6)

+
(

an extra term, which is positive
)

,

(8)

(

1+
1

8

)8

= 1

+
1

1!
· 8

8

+
1

2!
· 8

8
· 7

8

+
1

3!
· 8

8
· 7

8
· 6

8

+
1

4!
· 8

8
· 7

8
· 6

8
· 5

8

+
1

5!
· 8

8
· 7

8
· 6

8
· 5

8
· 4

8

+
1

6!
· 8

8
· 7

8
· 6

8
· 5

8
· 4

8
· 3

8

(term 8-0)

(term 8-1)

(term 8-2)

(term 8-3)

(term 8-4)

(term 8-5)

(term 8-6)

+
(

extra terms, which are all positive
)

,
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and so on. We have observed how each of

(term 5-2), (term 6-2), (term 7-2), (term 8-2), ... ;

(term 5-3), (term 6-3), (term 7-3), (term 8-3), ... ;

(term 5-4), (term 6-4), (term 7-4), (term 8-4), ... , and

(term 5-5), (term 6-5), (term 7-5), (term 8-5), ... ,

grow, and concluded:

Conclusion. As n grows larger, the sum of

◦ the deficit of by how much (term n-2) is short of
1

2!
,

◦ the deficit of by how much (term n-3) is short of
1

3!
,

◦ the deficit of by how much (term n-4) is short of
1

4!
, and

◦ the deficit of by how much (term n-5) is short of
1

5!
,

will get closer and closer to 0, whereas (term n-6) is at least

1

6!
· 6

6
· 5

6
· 4

6
· 3

6
· 2

6
· 1

6

(

which is just (term 6-6)
)

and it keeps growing. So ultimately, at some point, when

n becomes large enough, the number

(

1+
1

n

)n

exceeds the value

1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
.
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So we arrive at the conclusion:

Fact B-5. If you choose a large enough n, then

(

1+
1

n

)n

> 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
.

• Extrapolation leads:

Fact B-6. If you choose a large enough n, then

(

1+
1

n

)n

> 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
.

Fact B-7. If you choose a large enough n, then

(

1+
1

n

)n

> 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
+

1

7!
.

Fact B-8. If you choose a large enough n, then

(

1+
1

n

)n

> 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
+

1

7!
+

1

8!
.

and so on.
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We can acutally compress all of thse into one single statement, which is as follows:

Fact B. Let k be an arbitrarily chosen positive integer, and fixed. By choosing

a large enough n, we can make the following inequality true:

(

1+
1

n

)n

> 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+ ··· + 1

k ! .

⋆ Meanwhile, we can also extrapolate our prior observation and conclude:

Fact A. Let k be an arbitrary positive integer. Then

(

1+
1

k

)k

< 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+ ··· + 1

k ! .

So, what do these mean altogether? Yes, Fact A and Fact B mean precisely as follows:

Fact A and Fact B Compiled in one.

“ If you compare

(

1+
1

k

)k

and

1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+ ··· + 1

k ! ,

for the same k, then always the latter is bigger, however, the latter

is exceeded by

(

1+
1

n

)n

for a different, larger, n.
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This way we arrive at the following definition:

Definition 1. The limit

lim
n−→∞

(

1+
1

n

)n

means the ‘threshold’ number, the smallest number which

(

1+
1

n

)n

cannot

exceed when n runs through the entire positive integers.

Definition 2. The limit

lim
k−→∞

(

1+
1

1!
+

1

2!
+

1

3!
+

1

4!
+ ··· + 1

k !

)

means the ‘threshold’ number, the smallest number which

1+
1

1!
+

1

2!
+

1

3!
+

1

4!
+ ··· + 1

k !

cannot exceed when k runs through the entire positive integers.

Conclusion. The above two limits are indeed equal.

lim
n−→∞

(

1+
1

n

)n

= lim
k−→∞

(

1+
1

1!
+

1

2!
+

1

3!
+

1

4!
+ ··· + 1

k !

)

.
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Definiiton 3
(((

The precise mathematical definition of eee
)))

.

e = lim
n−→∞

(

1+
1

n

)n

= lim
k−→∞

(

1+
1

1!
+

1

2!
+

1

3!
+

1

4!
+ ··· + 1

k !

)

.

• Decimal expression of eee.

e = 2.7182818284590452353602874713526624977572470936999...

1 +
1

1!

1 +
1

1!
+

1

2!

1 +
1

1!
+

1

2!
+

1

3!

1 +
1

1!
+

1

2!
+

1

3!
+

1

4!

1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!

1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!

1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
+

1

7!

= 2,

= 2.5,

= 2.6666666... ,

= 2.7083333... ,

= 2.7166666... ,

= 2.7180555... ,

= 2.7182539... ,

· ·· ·· ·
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If you want to see more digits: The values

1+
1

1!
+

1

2!
+

1

3!
+

1

4!
+ ··· + 1

k !

for k = 1, 2, 3, 4, ··· , 30
(

up to the 30th digit under the decimal point
)

:

k = 1 =⇒ 2

k = 2 =⇒ 2.5

k = 3 =⇒ 2.666666666666666666666666666666...

k = 4 =⇒ 2.708333333333333333333333333333...

k = 5 =⇒ 2.716666666666666666666666666666...

k = 6 =⇒ 2.718055555555555555555555555555...

k = 7 =⇒ 2.718253968253968253968253968253...

k = 8 =⇒ 2.718278769841269841269841269841...

k = 9 =⇒ 2.718281525573192239858906525573...

k = 10 =⇒ 2.718281801146384479717813051146...

k = 11 =⇒ 2.718281826198492865159531826198...

k = 12 =⇒ 2.718281828286168563946341724119...

k = 13 =⇒ 2.718281828446759002314557870113...

k = 14 =⇒ 2.718281828458229747912287594827...

k = 15 =⇒ 2.718281828458994464285469576474...

k = 16 =⇒ 2.718281828459042259058793450327...

k = 17 =⇒ 2.718281828459045070516047795848...

k = 18 =⇒ 2.718281828459045226708117481710...

k = 19 =⇒ 2.718281828459045234928752728335...

k = 20 =⇒ 2.718281828459045235339784490666...

k = 21 =⇒ 2.718281828459045235359357431729...

k = 22 =⇒ 2.718281828459045235360247110869...

k = 23 =⇒ 2.718281828459045235360285792570...

k = 24 =⇒ 2.718281828459045235360287404308...

k = 25 =⇒ 2.718281828459045235360287468777...
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k = 26 =⇒ 2.718281828459045235360287471257...

k = 27 =⇒ 2.718281828459045235360287471349...

k = 28 =⇒ 2.718281828459045235360287471352...

k = 29 =⇒ 2.718281828459045235360287471352...

k = 30 =⇒ 2.718281828459045235360287471352...

Q. Once again, can you recite two definitions of e?

—

e = lim
n−→∞

(

1+
1

n

)n

,

e = lim
k−→∞

(

1+
1

1!
+

1

2!
+

1

3!
+

1

4!
+ ··· + 1

k !

)

.
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• §13. Square roots.

Review. Recall
√

0 = 0,
√

1 = 1,
√

4 = 2,
√

9 = 3,
√

16 = 4,
√

25 = 5,
√

36 = 6,
√

49 = 7,
√

64 = 8, and
√

81 = 9.

Q.
√

100 =?
√

144 =?
√

225 =?
√

324 =?

Consult the table below, if necessary.

x 10 11 12 13 14 15 16 17 18 19

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x2 100 121 144 169 196 225 256 289 324 361

—
√

100 = 10. Indeed, 100 = 102.
√

144 = 12. Indeed, 144 = 122.

√
225 = 15. Indeed, 225 = 152.

√
324 = 18. Indeed, 324 = 182.
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So, in short:

If n is a non-negative integer, and if a = n2 then
√

a = n .

But the real issue here is,

√
2 =?

√
3 =?

√
5 =?

√
6 =?

√
7 =?

√
8 =?

√
10 =?

√
11 =?

√
12 =?

√
13 =?

√
14 =?

√
15 =?

√
17 =?

√
18 =?

√
19 =?

√
20 =?

√
21 =?

√
22 =?

√
23 =?

√
24 =?

√
26 =?

√
27 =?

√
28 =?

√
29 =?

etc.
(

as you can see, I excluded
√

0 ,
√

1 ,
√

4 ,
√

9 ,
√

16 and
√

25
)

.

Review. What is
√

2 ?

√
2 is a number whose square equals 2. Namely:

“ ”
x =

√
2 is a number satisfying x2 = 2 .

But do we know such a number? Does such a number exist? Today’s discussion
focuses on whether such a number really exists. The answer is, yes, such a number
really exists. How do we find it? We can heuristically pull the decimal expression of√

2 as follows:

0. Observe

12 = 1,

22 = 4.

←−− smaller than 2

←−− bigger than 2

So
√

2 must sit between 1 and 2:

1 <
√

2 < 2.
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1. Observe

1.12 = 1.21,

1.22 = 1.44,

1.32 = 1.69,

1.42 = 1.96,

1.52 = 2.25,

←−− smaller than 2

←−− bigger than 2

So
√

2 must sit between 1.4 and 1.5:

1.4 <
√

2 < 1.5.

2. Observe

1.412 = 1.9881,

1.422 = 2.0164,

←−− smaller than 2

←−− bigger than 2

So
√

2 must sit between 1.41 and 1.42:

1.41 <
√

2 < 1.42.

3. Observe

1.4112 = 1.990921,

1.4122 = 1.993744,

1.4132 = 1.996569,

1.4142 = 1.999396,

1.4152 = 2.002225.

←−− smaller than 2

←−− bigger than 2

So
√

2 must sit between 1.414 and 1.415:

1.414 <
√

2 < 1.415.
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4. Observe

1.41412 = 1.99967881,

1.41422 = 1.99996164,

1.41432 = 2.00024449.

←−− smaller than 2

←−− bigger than 2

So
√

2 must sit between 1.4142 and 1.4143:

1.4142 <
√

2 < 1.4143.

So

√
2 = 1.4142... .

But of course this is endless. If you want to see more digits:

√
2 = 1.4142135623730950488016887242096980785696718753769... .

Most importantly, the decimal expression of
√

2 continues forever, it never ends.

As for this, there is a more efficient algorithm.
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•
...1 4 1 4 2

√

•
2 0 0 0 0 0 0 0 0

1

1 0 0

9 6

4 0 0

2 8 1

1 1 9 0 0

1 1 2 9 6

6 0 4 0 0

5 6 5 6 4

3 8 3 6

· ·· ·· ·

←−−−−−−−−−−−−−−−− (line 0)

←−−−−−−−−−−−− (line 1)

←−−−−−−−−− (line 2)

←−−−−− (line 3)

←−− (line 4)

Let’s dissect.
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◦ Start with

•
...a

√

•
2 0 0 0 0 0 0 0 0

←−−−−−−−−−−−−−−−− (line 0)

◦ You see a on top. a is one of 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9. We are

going to decide a.

◦ Choose the largest a such that a2 does not exceed 2. So a = 1. Register

your answer a = 1 on top. At the same time, place a2 = 1 in (line 0) as

indicated. Subtract (line 0) from the line right above it:

•
...1 b

√

•
2 0 0 0 0 0 0 0 0

1

1 0 0

←−−−−−−−−−−−− (line 1)

◦ Now the subtraction was performed. 00 was dragged down from the top.

At this point you see 100 right above (line 1).

◦ Now you see b on top. b is one of 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9. We are

going to decide b.
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◦ Choose the largest b such that

20 · 1 · b + b2

does not exceed 100, where 1 is in the left of b . So b = 4. Register

your answer b = 4 on top. At the same time, place 20 · 1 · b + b2 = 96

in (line 1) as indicated. Subtract (line 1) from the line right above it:

•
...1 4 c

√

•
2 0 0 0 0 0 0 0 0

1

1 0 0

9 6

4 0 0

←−−−−−−−−− (line 2)

◦ Now the subtraction was performed. 00 was dragged down from the top.

At this point you see 400 right above (line 2).

◦ Now you see c on top. c is one of 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9. We are

going to decide c.

◦ Choose the largest c such that

20 · 14 · c + c2

does not exceed 400, where 14 is in the left of c . So c = 1. Register

your answer c = 1 on top. At the same time, place 20 · 14 · c + c2 = 281

in (line 2) as indicated. Subtract (line 2) from the line right above it:
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•
...1 4 1 d

√

•
2 0 0 0 0 0 0 0 0

1

1 0 0

9 6

4 0 0

2 8 1

1 1 9 0 0

←−−−−− (line 3)

◦ Now the subtraction was performed. 00 was dragged down from the top.

At this point you see 11900 right above (line 3).

◦ Now you see d on top. d is one of 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9. We are

going to decide d.

◦ Choose the largest d such that

20 · 141 · d + d2

does not exceed 11900, where 141 is in the left of d . So d = 4.

Register your answer d = 4 on top. At the same time, place 20 ·141 · d+ d2

= 11296 in (line 3) as indicated. Subtract (line 3) from the line right

above it:
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•
...1 4 1 4

√

•
2 0 0 0 0 0 0 0 0

1

1 0 0

9 6

4 0 0

2 8 1

1 1 9 0 0

1 1 2 9 6

6 0 4 0 0

←−− (line 4)

And so on so forth.

You can continue this procedure, and get as many digits under the decimal point
as you want for the number

√
2 . The computation becomes harder as you move on,

though. Indeed, in this method, the size of the number you have to deal with
(

in

terms of how many digits it carries
)

grows proportionately to the number of all the
past steps.

Q. Do the same for
√

3 ,
√

5 , and
√

e , up to the fourth place under the
decimal point.
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—
√

3 = 1.7320...

[

Work
]

:

•
...1 7 3 2 0

√

•
3 0 0 0 0 0 0 0 0

1

2 0 0

1 8 9

1 1 0 0

1 0 2 9

7 1 0 0

6 9 2 4

1 7 6 0 0

0

1 7 6 0 0

· ·· ·· ·
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—
√

5 = 2.2360...

[

Work
]

:

•
...2 2 3 6 0

√

•
5 0 0 0 0 0 0 0 0

4

1 0 0

8 4

1 6 0 0

1 3 2 9

2 7 1 0 0

2 6 7 9 6

3 0 4 0 0

0

3 0 4 0 0

· ·· ·· ·
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—
√

e = 1.6487...

[

Work
]

:

•
...1 6 4 8 7

√

•
2 7 1 8 2 8 1 8 2

1

1 7 1

1 5 6

1 5 8 2

1 2 9 6

2 8 6 8 1

2 6 3 0 4

2 3 7 7 8 2

2 3 0 7 6 9

7 0 1 3

· ·· ·· ·
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Q. Recall the definition of a rational number.

— A number of the form
k

m
where k and m are integers and m is not equal

to 0 is called a rational number.

Q. Recall the definition of an irrational number.

— A number which is not a rational number is called an irrational number.

Q. Is
√

2 is rational, or irrational?

—
√

2 is irrational.

Q. Who proved it?

— Euclid.

Q. Which one of the following are rational numbers?

1

2
,

2

3
, 5,

7

3
, −2, 0,

3

10
, − 11

6
, −1000.

— All of those.

Review. Agree that there is an alternative definition of a rational number:

Alternative Definition (Rational numbers).

A rational number is a number which falls into either (i) or (ii):

(i) its decimal expression stops after finitely many digits under the decimal
point

(

this includes an integer
)

, or

(ii) its decimal expression contains a portion
(

‘unit’
)

made of a finite number
of consecutive digits, and the whole decimal expression of that number is an
infinite times iteration of that unit, except possibly a finite number of
leading digits.
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Q. Convert each of the following decimally expressed numbers into an integer
divided by an integer form.

0.52, 0.3125.

— 0.52 =
13

25
, and 0.3125 =

5

16

Q. Convert each iof the following fractions into a decimal expression.

1

275
,

764

70
.

1

275
= 0.0036363636...

764

70
= 10.9142857142857142857....

Q. Which one of the following is a rational number?

√
2 ,

√
3 ,

√
4 ,

√
5 ,

√
6 ,

√
7 ,

√
8 ,

√
9 ,

√
10 .

—
√

4 = 2 and
√

9 = 3 are rational, others are irrational.

Q. Prove that
√

2 is irrational.

⋆ The method of proof below is called proof by contradiction .

Proof. Suppose
√

2 is written as

√
2 =

k

m

using some integers k and m
(

where m 6= 0
)

.

First, if both k and m are even, then we may simultaneously divide both the
numerator and the denominator by 2

(

and the value of the fraction stays the same
)

.
After that procedure, suppose both the numerator and the denominator still remain
to be even, then we repeat the same procedure as many times as necessary until at
least one of the numerator and the denominator becomes odd. Thus we may assume,
without loss of generality, that at least one of k and m is odd.
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Under this assumption, square the both sides of the identity
√

2 =
k

m
, thus

2 =
k2

m2
.

This is the same as

2m2 = k2.

The left-hand side of this last identity is clearly even, so this last identity forces its
right-hand side to be also even. That in turn implies k is even, because if k is odd
then k2 is odd. But then k being even implies k2 is divisible by 4. So by virtue
of the above last identity 2m2 is divisible by 4, or the same to say, m2 is divisible
by 2, or the same to say, m2 is even. This implies that m is even. In short, both
k and m are even. This contradicts our assumption, that at least one of k and m

is odd. The proof is complete. �

55


