Math 105 TOPICS IN MATHEMATICS REVIEW OF LECTURES - IX (SUPPLEMENT)

February 9 (Mon), 2015
Instructor: Yasuyuki Kachi
Line \#: 52920.
Appendix to §9. Switching orders in prucut
formation. Substituting a quantity with negative sign.

- Switching the orders in product formation.

We know

$$
\begin{array}{ll}
3 \cdot 4 \cdot 5, \\
4 \cdot 5 \cdot 3,
\end{array} \quad \begin{aligned}
& 3 \cdot 5 \cdot 4, \\
& 5 \cdot 3 \cdot 4
\end{aligned} \quad \text { and } \quad \begin{aligned}
& 4 \cdot 3 \cdot 5, \\
& 5 \cdot 4 \cdot 3
\end{aligned}
$$

are all the same. They all equal 60. So, in a product formation, you are allowed to permute the numbers. When a letter is involved, the same principle remains true. For example,

$$
\begin{array}{lll}
3 \cdot x \cdot 5, & 3 \cdot 5 \cdot x \\
x \cdot 5 \cdot 3, & 5 \cdot 3 \cdot 5, \\
5 \cdot 3 \cdot x & \text { and } & 5 \cdot x \cdot 3
\end{array}
$$

are all equal. Now, when you are asked to simplify any of these, you would use either one of the two boxed ones, because $3 \cdot 5$ and $5 \cdot 3$ are readily calculated as 15 . So, $15 x$ is the result of simplification.

Exercise 1. Simplify each of

$$
2 \cdot x \cdot 4, \quad 3 \cdot x^{2} \cdot 6, \quad 20 \cdot x^{3} \cdot 2^{3} .
$$

[Answers $]: \quad 2 \cdot x \cdot 4=2 \cdot 4 \cdot x=8 x$,

$$
\begin{aligned}
& 3 \cdot x^{2} \cdot 6=3 \cdot 6 \cdot x^{2}=18 x^{2}, \\
& 20 \cdot x^{3} \cdot 2^{3}=20 \cdot 2^{3} \cdot x^{3}=160 x^{3} .
\end{aligned}
$$

\star Don't get distracted that a letter is squeezed in between two numbers.

- Substituting a quantity with negative sign.

We know

$$
\begin{aligned}
& 7+(-2)=7-2=5 \\
& 7-(-2)=7+2=9
\end{aligned}
$$

More generally,

$$
\begin{aligned}
& x+(-a)=x-a \\
& x-(-a)=x+a
\end{aligned}
$$

Exercise 2. Substitute $\quad a=-4 \quad$ in $\quad(x+a)^{2}$.
$[\underline{\text { Answer }}]: \quad(x-4)^{2}$.

Exercise 3. Substitute $\quad a=-6 \quad$ in $\quad(x-a)^{4}$.
$[\underline{\text { Answer }}]: \quad(x+6)^{4}$.

