
Math 105 TOPICS IN MATHEMATICS

REVIEW OF LECTURES – VIII

February 6 (Fri), 2015

Instructor: Yasuyuki Kachi

Line #: 52920.

§8. More about Binomial Coefficients.

We just adopted the notation for the numbers showing up in the Pascal’s triangle,

namely,

(

n

k

)

. These fit exactly as follows:

0
( )

0
/ \

1 1
( ) ( )

0 1
/ \ / \

2 2 2
( ) ( ) ( )

0 1 2
/ \ / \ / \

3 3 3 3
( ) ( ) ( ) ( )

0 1 2 3
/ \ / \ / \ / \

4 4 4 4 4
( ) ( ) ( ) ( ) ( )

0 1 2 3 4
/ \ / \ / \ / \ / \

5 5 5 5 5 5
( ) ( ) ( ) ( ) ( ) ( )

0 1 2 3 4 5
/ \ / \ / \ / \ / \ / \

6 6 6 6 6 6 6
( ) ( ) ( ) ( ) ( ) ( ) ( )

0 1 2 3 4 5 6
/ \ / \ / \ / \ / \ / \ / \

7 7 7 7 7 7 7 7
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 1 2 3 4 5 6 7
/ \ / \ / \ / \ / \ / \ / \ / \

(row 0)

(row 1)

(row 2)

(row 3)

(row 4)

(row 5)

(row 6)

(row 7)

Of course, what are in those boxes are actual numbers
(

positive integers
)

. Last time
we highlighted a formula that allows you to figure out those actual numbers in the
Pascal

(

“Formula A” in “Review of Lectures – VII”
)

. Let me reproduce:
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Formula A. Let n and k be integers, with 0 < k < n. Then

(

n

k

)

=
n
(

n−1
) (

n−2
)

···
(

n−k+1
)

1 · 2 · 3 · ··· · k .

If I base this formula, then I can easily convert the Pascal in the previous page into

1

/ \

1 1

/ \ / \

1 2 1

/ \ / \ / \

1 3 3 1

/ \ / \ / \ / \

1 4 6 4 1

/ \ / \ / \ / \ / \

1 5 10 10 5 1

/ \ / \ / \ / \ / \ / \

1 6 15 20 15 6 1

/ \ / \ / \ / \ / \ / \ / \

1 7 21 35 35 21 7 1

(row 0)

(row 1)

(row 2)

(row 3)

(row 4)

(row 5)

(row 6)

(row 7)

This is the same Pascal we have seen before. But the real upshot of Formula A above
is that the same works, namely, it instantaneously spits out the actual number at
any spot of Pascal, no matter how far down it is . Last time I did not quite explain
why we can safely claim that this formula is true. Today I want to offer a solid
justification why the shape of the formula has to be this way. But the argument
is not self-contained. We substantially rely on the content of our previous lectures.
Today’s lecture also serves the purpose of getting comfortable with the binomial
coefficients. So, ready?
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As a starter, let’s accept that, the left-most and the right-most in each row equal
1. That’s “pre-endowed”, a part of the proviso, called the initial condition . By
comparing the two versions of Pascal’s, one on page 1 and one on page 2, we can
offer

(

0

0

)

= 1,

(

1

0

)

= 1,

(

1

1

)

= 1,

(

2

0

)

= 1,

(

2

2

)

= 1,

(

3

0

)

= 1,

(

3

3

)

= 1,

(

4

0

)

= 1,

(

4

4

)

= 1,

(

5

0

)

= 1,

(

5

5

)

= 1,

(

6

0

)

= 1,

(

6

6

)

= 1,

(

7

0

)

= 1,

(

7

7

)

= 1,

· ·· ·· ·

A way to write these simultaneously in a short form is as follows:

Initial Conditions (of the Pascal algorithm).

(

n

0

)

= 1

(

n

n

)

= 1
,

(

n = 0, 1, 2, 3, ···
)

.
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Now, this might be repetitious, but since it is central to our on-going discussion,
so let’s recite the rule of Pascal:

Rule.

At every spot, that number equals the sum of two numbers right above it.

Thanks to this rule, the rest of the numbers are completely determined. From the
version of the Pascal in page 1, the same rule is recaptured as the relations

(

2

1

)

=

(

1

0

)

+

(

1

1

)

,

(

3

1

)

=

(

2

0

)

+

(

2

1

)

,

(

3

2

)

=

(

2

1

)

+

(

2

2

)

,

(

4

1

)

=

(

3

0

)

+

(

3

1

)

,

(

4

2

)

=

(

3

1

)

+

(

3

2

)

,

(

4

3

)

=

(

3

2

)

+

(

3

3

)

,

(

5

1

)

=

(

4

0

)

+

(

4

1

)

,

(

5

2

)

=

(

4

1

)

+

(

4

2

)

,

(

5

3

)

=

(

4

2

)

+

(

4

3

)

,

(

5

4

)

=

(

4

3

)

+

(

4

4

)

,

· · · ·· · · ·· · · ·

A way to write these simultaneously in a short form is

(

n+1

1

)

=

(

n

0

)

+

(

n

1

) (

n+1

2

)

=

(

n

1

)

+

(

n

2

) (

n+1

3

)

=

(

n

2

)

+

(

n

3

)

···
, , ,

(

n = 0, 1, 2, 3, ···
)

.

Or, just simply

Rule kkk.

(

n+1

k

)

=

(

n

k−1

)

+

(

n

k

)

(

0 < k ≤ n
)

.
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Also, it is thanks to the same rule
(

taking the initial condition aforementioned

into account
)

, that Pascal exhibits the left-to-right symmetry:

(

3

1

)

=

(

3

2

)

,

(

4

1

)

=

(

4

3

)

,

(

5

1

)

=

(

5

4

)

,

(

5

2

)

=

(

5

3

)

,

(

6

1

)

=

(

6

5

)

,

(

6

2

)

=

(

6

4

)

,

(

7

1

)

=

(

7

6

)

,

(

7

2

)

=

(

7

5

)

,

(

7

3

)

=

(

7

4

)

,

(

8

1

)

=

(

8

7

)

,

(

8

2

)

=

(

8

6

)

,

(

8

3

)

=

(

8

5

)

,

· · ·· · ·· · ·

A way to write these simultaneously in a short form is

(

n

1

)

=

(

n

n−1

) (

n

2

)

=

(

n

n−2

) (

n

3

)

=

(

n

n−3

)

···
, , ,

(

n = 0, 1, 2, 3, ···
)

.

Or, just simply

Symmetry.
(

n

k

)

=

(

n

n−k

)

(

0 ≤ k ≤ n
)

.
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• Now I want to incorporate this perspective, and recapture the essence of the
previous argument which we have extensively covered

(

in “Review of Lectures – II,

III and IV”
)

that will lead up to Formula A. The argument below looks different from
the previous lectures due to the new notation, but you can see the same narrative.
It will go step by step.

First, let’s try to dissect

(

n

1

)

. We are going to use

Rule 1.

(

n+1

1

)

=

(

n

0

)

+

(

n

1

)

(

‘Rule k’ in page 4 with k = 1
)

. Below “∗” underneath ‘=’ is where I have applied
Rule 1.

(

2

1

)

=

(

1

0

)

+

(

1

1

)

= 1 + 1

(

since

(

n

0

)

=

(

n

n

)

= 1

)

∗

= 2,

(

3

1

)

=

(

2

0

)

+

(

2

1

)

= 1 + 2

(

since

(

n

0

)

= 1 and
∗

(

2

1

)

= 2 as shown above

)

= 3,

(

4

1

)

=

(

3

0

)

+

(

3

1

)

= 1 + 3

(

since

(

n

0

)

= 1 and
∗

(

3

1

)

= 3 as shown above

)

= 4,
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(

5

1

)

=

(

4

0

)

+

(

4

1

)

= 1 + 4

(

since

(

n

0

)

= 1 and
∗

(

4

1

)

= 4 as shown above

)

= 5,

(

6

1

)

=

(

5

0

)

+

(

5

1

)

= 1 + 5

(

since

(

n

0

)

= 1 and
∗

(

5

1

)

= 5 as shown above

)

= 6,

···

In sum,

(

1

1

)

= 1,

(

2

1

)

= 2,

(

3

1

)

= 3,

(

4

1

)

= 4,

(

5

1

)

= 5,

(

6

1

)

= 6,

···
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So, we can extrapolate and conclude

(

n

1

)

= n
(

n = 1, 2, 3, 4, ···
)

.

Since we already have

(

n

1

)

=

(

n

n−1

)

, that is,

(

1

1

)

=

(

1

0

)

,

(

2

1

)

=

(

2

1

)

,

(

3

1

)

=

(

3

2

)

,

(

4

1

)

=

(

4

3

)

,

(

5

1

)

=

(

5

4

)

,

(

6

1

)

=

(

6

5

)

,

(

7

1

)

=

(

7

6

)

,

···

we conclude

(

n

1

)

= n

(

n

n−1

)

= n
(

n = 0, 1, 2, 3, ···
)

.
,
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• Next, let’s dissect

(

n

2

)

. We are going to use

Rule 2.

(

n+1

2

)

=

(

n

1

)

+

(

n

2

)

(

‘Rule k’ in page 4 with k = 2
)

. Below “∗” underneath ‘=’ is where I have applied
Rule 2.

(

2

2

)

= 1

(

since

(

n

n

)

= 1 as shown above

)

,

(

3

2

)

= 3

(

since

(

n

n−1

)

= n as shown above

)

,

(

4

2

)

=

(

3

1

)

+

(

3

2

)

= 3 + 3

(

since

(

n

1

)

= n and
∗

(

3

2

)

= 3 as shown above

)

= 6,

(

5

2

)

=

(

4

1

)

+

(

4

2

)

= 4 + 6

(

since

(

n

1

)

= n and
∗

(

4

2

)

= 6 as shown above

)

= 10,
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(

6

2

)

=

(

5

1

)

+

(

5

2

)

= 10 + 5

(

since

(

n

1

)

= n and
∗

(

5

2

)

= 10 as shown above

)

= 15,

(

7

2

)

=

(

6

1

)

+

(

6

2

)

= 15 + 6

(

since

(

n

1

)

= n and
∗

(

6

2

)

= 15 as shown above

)

= 21,

(

8

2

)

=

(

7

1

)

+

(

7

2

)

= 21 + 7

(

since

(

n

1

)

= n and
∗

(

7

2

)

= 21 as shown above

)

= 28,

(

9

2

)

=

(

8

1

)

+

(

8

2

)

= 28 + 8

(

since

(

n

1

)

= n and
∗

(

8

2

)

= 28 as shown above

)

= 36,

···

10



In sum,

(

2

2

)

= 1,

(

3

2

)

= 3,

(

4

2

)

= 6,

(

5

2

)

= 10,

(

6

2

)

= 15,

(

7

2

)

= 21,

(

8

2

)

= 28,

···

As you can see, this is exactly the subject previously addressed
(

in “Review of

Lectures — II”
)

: The above is nothing else but the algorithm that yields

1 = 1,

1 + 2 = 3,

1 + 2 + 3 = 6,

1 + 2 + 3 + 4 = 10,

1 + 2 + 3 + 4 + 5 = 15,

1 + 2 + 3 + 4 + 5 + 6 = 21,

1 + 2 + 3 + 4 + 5 + 6 + 7 = 28,

· ·· ·· ·
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The patterns which we already figured out in “Review of Lectures — II” for this
sequence are

1 =
1

2
· 1 · 2,

3 =
1

2
· 2 · 3,

6 =
1

2
· 3 · 4,

10 =
1

2
· 4 · 5,

15 =
1

2
· 5 · 6,

21 =
1

2
· 6 · 7,

28 =
1

2
· 7 · 8,

···

So,
(

2

2

)

=
1

2
· 1 · 2,

(

3

2

)

=
1

2
· 2 · 3,

(

4

2

)

=
1

2
· 3 · 4,

(

5

2

)

=
1

2
· 4 · 5,

(

6

2

)

=
1

2
· 5 · 6,

(

7

2

)

=
1

2
· 6 · 7,

(

8

2

)

=
1

2
· 7 · 8,

···
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These translate into

(

n+1

2

)

=
1

2
n
(

n+1
) (

n = 1, 2, 3, 4, ···
)

,

or the same

(

n

2

)

=
1

2
n
(

n−1
) (

n = 2, 3, 4, 5, ···
)

.

(

As you can see, these two are mutually the shifting of n of each other.
)

Since we already have

(

n

2

)

=

(

n

n−2

)

, that is,

(

2

2

)

=

(

2

0

)

,

(

3

2

)

=

(

3

1

)

,

(

4

2

)

=

(

4

2

)

,

(

5

2

)

=

(

5

3

)

,

(

6

2

)

=

(

6

4

)

,

(

7

2

)

=

(

7

5

)

,

···

we conclude

(

n

2

)

=
1

2
n
(

n−1
)

(

n

n−2

)

=
1

2
n
(

n−1
)

,

(

n = 2, 3, 4, 5, ···
)

.
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• Next, let’s dissect

(

n

3

)

. We are going to use

Rule 3.

(

n+1

3

)

=

(

n

2

)

+

(

n

3

)

(

‘Rule k’ in page 4 with k = 3
)

. Below “∗” underneath ‘=’ is where I have applied
Rule 3.

(

3

3

)

= 1

(

since

(

n

n

)

= 1 as shown above

)

,

(

4

3

)

= 4

(

since

(

n

n−1

)

= n as shown above

)

,

(

5

3

)

= 10

(

since

(

n

n−2

)

=
1

2
n
(

n−1
)

as shown above

)

,

(

6

3

)

=

(

5

2

)

+

(

5

3

)

∗

= 10 + 10

(

since

(

n

2

)

=
1

2
n
(

n−1
)

and

(

5

3

)

= 10 as shown above

)

= 20,
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(

7

3

)

=

(

6

2

)

+

(

6

3

)

∗

= 15 + 20

(

since

(

n

2

)

=
1

2
n
(

n−1
)

and

(

6

3

)

= 20 as shown above

)

= 35,

(

8

3

)

=

(

7

2

)

+

(

7

3

)

∗

= 21 + 35

(

since

(

n

2

)

=
1

2
n
(

n−1
)

and

(

7

3

)

= 35 as shown above

)

= 56,

(

9

3

)

=

(

8

2

)

+

(

8

3

)

∗

= 28 + 56

(

since

(

n

2

)

=
1

2
n
(

n−1
)

and

(

8

3

)

= 56 as shown above

)

= 84,
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In sum,

(

3

3

)

= 1,

(

4

3

)

= 4,

(

5

3

)

= 10,

(

6

3

)

= 20,

(

7

3

)

= 35,

(

8

3

)

= 56,

(

9

3

)

= 84,

···

As you can see, this is exactly the subject previously addressed
(

in “Review of

Lectures — III”
)

: The above is nothing else but the algorithm that yields

1 = 1,

1 + 3 = 4,

1 + 3 + 6 = 10,

1 + 3 + 6 + 10 = 20,

1 + 3 + 6 + 10 + 15 = 35,

1 + 3 + 6 + 10 + 15 + 21 = 56,

1 + 3 + 6 + 10 + 15 + 21 + 28 = 84,

· ·· ·· ·
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The patterns which we already figured out in “Review of Lectures — III” for this
sequence are

1 =
1

6
· 1 · 2 · 3,

4 =
1

6
· 2 · 3 · 4,

10 =
1

6
· 3 · 4 · 5,

20 =
1

6
· 4 · 5 · 6,

35 =
1

6
· 5 · 6 · 7,

56 =
1

6
· 6 · 7 · 8,

84 =
1

6
· 7 · 8 · 9,

···

So,
(

3

3

)

=
1

6
· 1 · 2 · 3,

(

4

3

)

=
1

6
· 2 · 3 · 4,

(

5

3

)

=
1

6
· 3 · 4 · 5,

(

6

3

)

=
1

6
· 4 · 5 · 6,

(

7

3

)

=
1

6
· 5 · 6 · 7,

(

8

3

)

=
1

6
· 6 · 7 · 8,

(

9

3

)

=
1

6
· 7 · 8 · 9,

···
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These translate into

(

n+2

3

)

=
1

6
n
(

n+1
)(

n+2
) (

n = 1, 2, 3, 4, ···
)

,

or the same

(

n

3

)

=
1

6
n
(

n−1
)(

n−2
) (

n = 3, 4, 5, 6, ···
)

.

(

As you can see, these two are mutually the shifting of n of each other.
)

Since we already have

(

n

3

)

=

(

n

n−3

)

, that is,

(

3

3

)

=

(

3

0

)

,

(

4

3

)

=

(

4

1

)

,

(

5

3

)

=

(

5

2

)

,

(

6

3

)

=

(

6

3

)

,

(

7

3

)

=

(

7

4

)

,

(

8

3

)

=

(

8

5

)

,

···

we conclude

(

n

3

)

=
1

6
n
(

n−1
)(

n−2
)

(

n

n−3

)

=
1

6
n
(

n−1
)(

n−2
)

,

(

n = 3, 4, 5, 6, ···
)

.
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• And you know where I’m going. The next will be to dissect

(

n

4

)

. I would run

the same argument, with necessary tweaks, relying on the result which we previously
worked out in “Review of Lectures – IV”, and conclude

(

n

4

)

=
1

24
n
(

n−1
)(

n−2
)(

n−3
)

(

n

n−4

)

=
1

24
n
(

n−1
)(

n−2
)(

n−3
)

,

(

n = 4, 5, 6, 7, ···
)

,

and so on so forth.

• Summary. Here is what we’ve got so far.

(

n

0

)

= 1,

(

n

1

)

= n,

(

n

2

)

=
1

2
n
(

n−1
)

,

(

n

3

)

=
1

6
n
(

n−1
)(

n−2
)

,

(

n

4

)

=
1

24
n
(

n−1
)(

n−2
)(

n−3
)

,

(

n

n

)

= 1,

(

n

n−1

)

= n,

(

n

n−2

)

=
1

2
n
(

n−1
)

,

(

n

n−3

)

=
1

6
n
(

n−1
)(

n−2
)

,

(

n

n−4

)

=
1

24
n
(

n−1
)(

n−2
)(

n−3
)

,

(

n

5

)

=
1

120
n
(

n−1
)(

n−2
)(

n−3
)(

n−4
)

,

(

n

n−5

)

=
1

120
n
(

n−1
)(

n−2
)(

n−3
)(

n−4
)

,

· ·· ·· ·
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Here, the progression of the denominator is

1 = 1,

2 = 1 · 2,

6 = 1 · 2 · 3,

24 = 1 · 2 · 3 · 4,

120 = 1 · 2 · 3 · 4 · 5,

· ·· ·· ·

Actually, if you want to see more of these

1 = 1,

2 = 1 · 2,

6 = 1 · 2 · 3,

24 = 1 · 2 · 3 · 4,

120 = 1 · 2 · 3 · 4 · 5,

720 = 1 · 2 · 3 · 4 · 5 · 6,

5040 = 1 · 2 · 3 · 4 · 5 · 6 · 7,

40320 = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8,

362880 = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9,

3628800 = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10,

· ·· ·· ·
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By the way, how do these numbers grow? Is there any patterns?

One way to look at it is it is the multiplication version of

1 = 1,

3 = 1 + 2,

6 = 1 + 2 + 3,

10 = 1 + 2 + 3 + 4,

15 = 1 + 2 + 3 + 4 + 5,

21 = 1 + 2 + 3 + 4 + 5 + 6,

28 = 1 + 2 + 3 + 4 + 5 + 6 + 7,

36 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,

· ·· ·· ·





































































































You might ask: “Is there a formula?” “How fast is the growth rate?” Excellent
questions. Actually, these numbers play very special and important roles in math-
ematics. They make frequent appearances in all corners of mathematics. Besides,
they are interesting in their own right. So, I am going to revisit this subject later.

• So, in any case, the above results
(

‘Summary’ two pages ago
)

are compressed
in one single line, and that is our Formula A. Let’s duplicate it:

Formula A (binomial coefficients).

Let n and k be integers, with 0 < k < n. Then

(

n

k

)

=
n
(

n−1
) (

n−2
)

···
(

n−k+1
)

1 · 2 · 3 · ··· · k .

Last time I did not quite explain why this formula is true. Now the above is why
this is true. The argument relied on our previous lectures

(

“Review of Lectures —

II, III and IV”
)

.
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• Fermat Primes, Mersenne Primes.

Change the subject. Do you remember 2-to-the-powers? Yes, they are

21 = 2,

22 = 4,

23 = 8,

24 = 16,

25 = 32,

26 = 64,

27 = 128,

28 = 256,

29 = 512,

210 = 1024,

211 = 2048,

212 = 4096,

213 = 8192,

214 = 16384,

215 = 32768,

216 = 65536,

· ·· ·· ·

Now, just out of the blue, do you remember that, on Day 1, I talked a little bit
about how vexing the prime number distribution is? Yes? Good. But what do the 2-
to-the-powers have to do with it? They seemingly have nothing to do with each other,
because

(

with the obvious exception of 2
)

none of the 2-to-the-powers is a prime.
Not so fast. Let me answer it. Adding 1 to, or subtracting 1 from, those 2-to-the-
powers suddenly have a bearing on the business of the mystery of primes. Historically
speaking, the following types of numbers drew attention of mathematicians in relation
to large primes.
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Definition. (1) A number of the form

2n + 1 n: a positive integer,

is called a Fermat number .*

◦ If it is a prime, then it is called a Fermat prime .*

(2) A number of the form

2n − 1 n: a positive integer,

is called a Mersenne number .**

◦ If it is a prime, then it is called a Mersenne prime .**

On Day 1 I said there are infinitely many primes, and that fact has been long
known since Euclid

(

B.C. 300, c.
)

. But what I didn’t say is that does not mean
that we have a list that contains infinitely many concrete examples of primes. In
fact, no one has

(

on this planet
)

. Indeed, what I am going to say next is potentially
confusing, so listen carefully:

There is such a thing called ‘the largest known prime’.

It means as follows: Somebody has offered one particular number
(

a positive

integer
)

, a very very large number, and has mathematically proved that it is indeed a
prime. Moreover, no one has offered another, larger, number and has mathematically
proved that it is a prime. So, ‘the largest known prime’ is dependent on time, it keeps
getting replaced by larger ones as the time progresses, because people are working on
getting hold of larger and larger primes. So, the nature of ‘the largest known prime’
is, it is not permanent, but it is constantly updated. The largetst known prime today
may not be the largetst known prime tomorrow. Now, this process

(

of getting hold

of larger primes
)

is heavily computer-dependent. But I am going to say something
equally important about the roles of computers in a little bit.

*Named after Pierre de Fermat (1601(?)–1665).
**Named after Marin Mersenne (15488–1648).
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The reason why I say this is potentially confusing is that we know for fact that
there are indeed infinitely many primes. But the crux of the matter is, for each given

prime p, we, human being, do not know of a concrete formula for the next prime,

or not even a formula that generates any prime larger than p. So that’s why it

makes sense to recognize such and such number is a prime, and it is “so far” the
largest prime known to us, human beings. Maybe somewhere out in the universe,
there is a planet where there is an intelligence, something like us, humans, live there,
and they do know such a formula. Who knows. Now, the largest known primes are
typically

(

here I say ‘typically’ because like I said, this is constantly updated
)

a
Mersenne prime. That’s one reason

(

one of the many reasons
)

why Mersenne primes
draw public attention.

Meanwhile, Fermat primes, “kissing cousins” of Mersenne primes, are of special
interest after the striking discovery by a mathematician named Gauss*: Gauss has
answered one problem famous at that time

(

the late 18th century, that is
)

, that, if N
is a Fermat prime, then a regular polygon with N edges, namely, a figure inscribed
in a circle that has N straight edges and N vertices, and those N vertices are
evenly distributed on the perimeter of the circle, is drawn only using straightedge
and compass. So, for example, a regular heptadecagon

(

a regular polygon with

N = 22
2

+ 1 = 17 edges
)

can be drawn only with straightedge and compass.*

Here, please don’t dismiss it by saying “computers can draw just about any of
those figures”. I want to elaborate this point, because this is important. There is a
precise mathematical meaning attached to the expression “something can be drawn

only with straightedge and compass.” When I talk about drawings of figures, what
you are thinking is either an ink spead on a sheet or a collection of dots, or ‘pixels’,
in case it is digitally drawn. But every stroke has thickness, no matter how thin it is,
just that the thickness is thin enough so from a distance it looks like lines and circles
but they are actually ‘bands’, and moreover the width of the bands is not exactly
even, if you care to use a microscope to magnify it, partially because the surface of
the paper

(

or LCD screen
)

is not exactly even or flat. But we draw figures in math
classes, and our stance is we ‘pretend ’ that those strokes have no width.

*Carl Friedrich Gauss (1777–1855). B. Riemann (1826–1866) is Gauss’ disciple.

*Someone has created a visual motion picture of 64 steps to draw the regular heptadecagon based

on Gauss’ formula:

http://en.wikipedia.org/wiki/File :HeptadecagonConstructionAni.gif
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Now, keeping that scope intact, yes, of course, your computer can draw an ‘ap-
proximate’ figure within the margin of the thickness of a stroke. But what I am
talking about is something else. In mathematics, a statement “such and such poly-
gon is drawn only with straightedge and compass” means that the pair of numbers
that pinpoint the location of any of its vertices relative to the origin of the coordi-
nate

(

the coordinate readings of the referenced vertex
)

both belong to a sequence of
numbers where each member in that sequence arises as a root of a certain quadratic
equation whose coefficients reside in a ‘field generated by’ the previous member of
the same sequence, where a field generated by a certain number means the smallest
number system that contains that number and all integers that is closed under ad-
dition, subtraction, multiplication, and division. So, in the context of feasibility of
drawing figures, the computer’s drawing ability is irrelevant. A side note: As you can
probably extrapolate from my tone, mathematicians are actually more interested in
the ‘feasibility’ of drawing more so than the actual process of drawing when feasible.
And that ‘feasibility’ part is highly ‘theoretical’. Certain polygons are mathemati-
cally proved to be impossible to be drawn. And when I state something like that, I
strictly adhere to the above definition as to the interpretation of ‘impossible’. Com-
puters do not make a difference in this case. The simplest regular polygon

(

a regular

polygon with fewest number of edges
)

that is proved to be impossible to be drawn

is a regular heptagon
(

seven vertices evenly distributed across the perimeter of a

circle
)

. So, folks, seven is not feasible whereas seventeen is feasible. Interesting,
huh?

Now, no body has managed to answer the following fundamental questions:

(Open) Question 1. Are there infinitely many Fermat primes?

(Open) Question 2. Are there infinitely many Mersenne primes?

As for Question 1, it is well-known that in order for a Fermat number 2n + 1 to
be a prime, n has to be a 2-to-the-power in itself. So we denote

F1 = 22
1

+ 1 = 22 + 1 = 5,

F2 = 22
2

+ 1 = 24 + 1 = 17,

F3 = 22
3

+ 1 = 28 + 1 = 257,

F4 = 22
4

+ 1 = 216 + 1 = 65537,

F5 = 22
5

+ 1 = 232 + 1 = 4294967297,

···
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Fermat, a 17-th century mathematician, has observed that F1, F2, F3, and F4

are all primes. Then he rushed to conclusion that all Fk are primes. Alas, as it
turned out, F5 was a non-prime:

4294967297 = 641 · 6700417.

This factorization was discovered by Euler*, thus Euler has refuted what Fermat was
falsely led to believe. Now, today with all the modern computer technology, all Fks
up to F42 are computed. Surprisingly enough, none of them except the first four:
F1, F2, F3, and F4, are primes. To this day no one knows if there is a Fermat prime
other than F1, F2, F3, and F4.

(

You will become instantly famous if you discover
one. But there is no guarantee that there is indeed one. Alternatively, if you manage
to prove that the only Fermat primes are F1, F2, F3 and F4, then you will become
famous. But of course there is no guarantee that that statement is true.

)

As for Question 2, it is well-known that, in order for a Mersenne number 2n − 1
to be a prime, n has to be a prime in itself. However, the subtlety of the matter
is, not all numbers of the form 2p − 1, with p prime, is a Mersenne prime. For
example, even though p = 11 is a prime,

211 − 1 = 2047 = 23 · 89

is not a prime. That’s why Question 2 makes sense. According to Wikipedia, the
largest known prime as of December, 2014, is actually a Mersenne prime, and it is

57885161
2 - 1.

This is a number that carries 17425170 digits.

Mersenne primes are of interest because it is closely related to another famous open
problem: “Are all perfect numbers even?” Here, a perfect number is a positive integer
k such that, if you add up all of its divisors, including 1 and excluding k itself, then
the sum equals k. But that’s a whole nother subject. I shall stop here.

*Leonhard Euler (1707–1783).
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