Math 105 TOPICS IN MATHEMATICS
 REVIEW OF LECTURES - VII

February 4 (Wed), 2015
Instructor: Yasuyuki Kachi
Line \#: 52920.
§7. Binomial formula.

Three lectures ago (in "Review of Lectuires - IV"), we have covered

This is called the Pascal's triangle . How the numbers are arranged in the Pascal's triangle is dictated by the rule:

Rule.

At every spot, that number equals the sum of two numbers right above it.

Meanwhile, let's recall two formulas

$$
\begin{aligned}
& (x+y)^{2}=x^{2}+2 x y+y^{2} \\
& (x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}
\end{aligned}
$$

(The first one from "Review of Lectures - V", the second one from "Review of Lectures - VI".) Today I want to bridge these two subjects. As a starter, let's address what comes next to squaring and cubing .

- Higher powers. We have defined x^{2} and x^{3} :

$$
\begin{array}{cc|}
\hline x^{2}=x \cdot x & \text { and } \\
\left(\begin{array}{ll}
x^{3}=x \cdot x \cdot x \\
(\text { the square of } x) & (\text { the cube of } x)
\end{array}\right.
\end{array}
$$

It is very natural to extend this and consider

$$
\begin{aligned}
x^{0} & =1 \\
x^{1} & =x \\
x^{2} & =x \cdot x \\
x^{3} & =x \cdot x \cdot x \\
x^{4} & =x \cdot x \cdot x \cdot x \\
x^{5} & =x \cdot x \cdot x \cdot x \cdot x \\
x^{6} & =x \cdot x \cdot x \cdot x \cdot x \cdot x \\
x^{7} & =x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x
\end{aligned}
$$

$$
\vdots
$$

So here is the formal definition:

Definition. For a positive integer n, define x^{n} as

$$
x^{n}=\underbrace{x \cdot x \cdot x \cdot}_{n} \quad \cdots \quad \cdot x .
$$

This is pronounced as

$$
\begin{gathered}
" x \text { to the } n \text {-th power }
\end{gathered},,
$$

or simply

$$
" x \text { to the } n "
$$

Example 1. For $n=24$,

$$
\begin{aligned}
x^{24}= & x \cdot x \cdot x \cdot x \cdot x \cdot x \\
& x \cdot x \cdot x \cdot x \cdot x \cdot x \\
& x \cdot x \cdot x \cdot x \cdot x \cdot x \\
& x \cdot x \cdot x \cdot x \cdot x \cdot x
\end{aligned}
$$

(" x to the 24 ").

* Let me repeat that, for $n=0$ and $n=1$, we set

$$
x^{0}=1 \quad \text { and }
$$

$$
x^{1}=x
$$

and these are by convention.

Example 2. $\quad 3^{4}=3 \cdot 3 \cdot 3 \cdot 3=81$.
Example 3. $\quad 3^{5}=3 \cdot 3 \cdot 3 \cdot 3 \cdot 3=243$.
Example 4. $\quad 4^{4}=4 \cdot 4 \cdot 4 \cdot 4=256$.
Example 5. $\quad 5^{4}=5 \cdot 5 \cdot 5 \cdot 5=625$.
Example 6. $\quad 3^{6}=3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3=729$.
Example 7. $\quad 4^{5}=4 \cdot 4 \cdot 4 \cdot 4 \cdot 4=1024$.
Example 8. $\quad 6^{4}=6 \cdot 6 \cdot 6 \cdot 6=1296$.
Example 9. $\quad 7^{4}=7 \cdot 7 \cdot 7 \cdot 7=2401$.
Example 10. $\quad 5^{5}=5 \cdot 5 \cdot 5 \cdot 5 \cdot 5=3125$.
Example 11. $\quad 4^{6}=4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4=4096$.
Example 12.

$$
\begin{aligned}
& 10^{4}=10 \cdot 10 \cdot 10 \cdot 10=10000 \quad \text { (ten thousand) } \\
& 10^{5}=10 \cdot 10 \cdot 10 \cdot 10 \cdot 10=100000 \quad \text { (one hundred thousand) } \\
& 10^{6}=10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10=1000000 \quad \text { (one million). } \\
& 10^{7}=10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10=10000000 \text { (ten million). } \\
& 10^{8}=10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10=100000000 \text { (one hundred million). } \\
& 10^{9}=10 \cdot 10 \cdot 10=1000000000 \quad \text { (one billion). }
\end{aligned}
$$

- More generally, for a positive integer n,

$$
10^{n}=1 \underbrace{00000}_{n} \ldots 0
$$

* In mathematics, we don't place ' , ' (comma) after every third digit.
- 0-to-the-powers. We have

$$
\begin{aligned}
& 0^{1}= \\
& 0^{2}=0, \\
& 0^{3}=0, \\
& 0^{4}=0, \\
& 0^{5}=0, \\
& 0^{6}=0, \\
& 0^{7}=0, \\
& \vdots \\
& \vdots
\end{aligned}
$$

- Well, nothing impressive or dramatic.
- 1-to-the-powers. We have

1^{1}	$=$	1,
1^{2}	$=$	1,
1^{3}	$=$	1,
1^{4}	$=$	1,
1^{5}	$=$	1,
1^{6}	$=$	1,
1^{7}	$=$	1,
\vdots		\vdots

- Again, nothing impressive or dramatic.

By the way,
$1^{0}=1 \quad$ whereas $\quad 0^{0}$ is undefined.

- ($\mathbf{- 1}$)-to-the-powers. We have

$$
\begin{array}{ll}
(-1)^{1} & = \\
-1 \\
(-1)^{2} & =
\end{array}
$$

$$
(-1)^{3} \quad=\quad-1
$$

$$
(-1)^{4} \quad=\quad 1
$$

$$
(-1)^{5} \quad=\quad-1
$$

$$
(-1)^{6} \quad=\quad 1
$$

$$
(-1)^{7} \quad=\quad-1
$$

$$
(-1)^{8} \quad=\quad 1
$$

$$
(-1)^{9} \quad=\quad-1
$$

$$
(-1)^{10}=\quad 1
$$

$$
\vdots \quad \vdots
$$

In short,

$$
(-1)^{n}=\left\{\begin{array}{cl}
1 & (\text { if } n \text { is } \xlongequal{\text { even }}) \\
-1 & (\text { if } n \text { is } \xlongequal{\text { odd }})
\end{array}\right.
$$

Exercise 1. Find each of

$$
(-1)^{15}, \quad(-1)^{48}, \quad(-1)^{91}
$$

[Answers]: $\quad(-1)^{15}=-1 . \quad(-1)^{48}=1 . \quad(-1)^{91}=-1$.

- (\boldsymbol{a})-to-the-powers. We have

$$
\begin{aligned}
& (-a)^{1} \quad=\quad-a \\
& (-a)^{2} \quad=\quad a^{2}
\end{aligned}
$$

$$
(-a)^{3} \quad=\quad-a^{3}
$$

$$
(-a)^{4} \quad=\quad a^{4}
$$

$$
(-a)^{5} \quad=\quad-a^{5}
$$

$$
(-a)^{6} \quad=\quad a^{6}
$$

$$
(-a)^{7} \quad=\quad-a^{7}
$$

$$
(-a)^{8}=\quad a^{8}
$$

$$
(-a)^{9} \quad=\quad-a^{9}
$$

$$
(-a)^{10} \quad=\quad a^{10}
$$

$$
\vdots \quad \vdots
$$

In short,

$$
(-a)^{n}=\left\{\begin{array}{cl}
a^{n} & (\text { if } n \text { is } \underline{\underline{\text { even }}}) \\
-a^{n} & (\text { if } n \text { is } \underline{\underline{\text { odd }}})
\end{array}\right.
$$

Exercise 2. Find each of

$$
(-2)^{6}, \quad(-3)^{5}, \quad(-5)^{4}
$$

[Answers $]: \quad(-2)^{6}=64 . \quad(-3)^{5}=-243 . \quad(-5)^{4}=625$.

- 2-to-the-powers.

The numbers in the following sequence are called " 2-to-the-powers ":

$$
\begin{array}{rlr}
2^{1} & = & 2, \\
2^{2} & = & 4, \\
2^{3} & = & 8, \\
2^{4} & = & 16, \\
2^{5} & = & 32, \\
2^{6} & = & 64, \\
2^{7} & = & 128, \\
2^{8} & = & 256, \\
2^{9} & = & 512, \\
2^{10} & =1024, \\
2^{11} & = & 2048, \\
2^{12} & =4096, \\
2^{13} & =8192, \\
2^{14} & =16384, \\
2^{15} & =32768, \\
2^{16} & =65536, \\
\vdots
\end{array}
$$

2-to-the-powers frequently appear in mathematics. Please familiarize yourself with the above listed numbers (the first sixteen of 2-to-the-powers).

Exercise 3. Identify all 2-to-the-powers among the numbers listed below. Write each of those 2 -to-the-powers in the form 2^{n} with a concrete positive integer n.

$$
\begin{array}{rrrrrrrr}
8, & 12, & 24, & 32, & 48, & 64, & 80, & 84, \\
144, & 216, & 256, & 360, & 384, & 480, & 512, & 768, \\
1296, & 1440, & 2016, & 2048, & 2560, & 3840, & 5040, & 6912, \\
18192 .
\end{array}
$$

$\left[\begin{array}{lllllll}\text { Answer }]: & 8, & 32, \quad 64, & 128, & 256, & 512, & 2048, \\ 8192 .\end{array}\right.$

$$
\begin{aligned}
8 & =2^{3}, & 32 & =2^{5},
\end{aligned} r\left(\begin{array}{rlr}
6 & =2^{7}, \\
256 & =2^{8}, & 512
\end{array}=2^{9}, \quad ~ 2048=2^{11}, \quad ~ 8192=2^{13} .\right.
$$

- Binomial Formula.

Finally today's main theme. Check this out:

$$
\begin{align*}
& (x+y)^{1}=x+y \tag{1}\\
& (x+y)^{2}=x^{2}+\underline{\underline{2}} x y+y^{2} \tag{2}
\end{align*}
$$

$$
\begin{align*}
& (x+y)^{2}=x^{2}+\underline{\underline{2}} x y+y^{2} \\
& (x+y)^{3}=x^{3}+\underline{\underline{3}} x^{2} y+\underline{\underline{3}} x y^{2}+y^{3} \tag{3}\\
& (x+y)^{4}=x^{4}+\underline{\underline{4}} x^{3} y+\underline{\underline{6}} x^{2} y^{2}+\underline{\underline{4}} x y^{3}+y^{4} \tag{4}\\
& (x+y)^{5}=x^{5}+\underline{\underline{5}} x^{4} y+\underline{\underline{10}} x^{3} y^{2}+\underline{\underline{10}} x^{2} y^{3}+\underline{\underline{5}} x y^{4}+y^{5} \tag{5}\\
& (x+y)^{6}=x^{6}+\underline{\underline{6}} x^{5} y+\underline{\underline{15}} x^{4} y^{2}+\underline{\underline{20}} x^{3} y^{3}+\underline{\underline{15}} x^{2} y^{4}+\underline{\underline{6}} x y^{5}+y^{6} \tag{6}\\
& \quad \vdots
\end{align*}
$$

The first one is just a tautology. The next two we have covered in our last two lectures. Others look new to you. Let's dissect. First, we have a convenient word for the underlined numbers in the above. They are called the coefficients. Also, for example, x^{3} can be regarded as an abbreviation for $1 x^{3}$, $\overline{\text { etc. So we say that, in }}$ the right-hand side of each of the above lines, the first and the last terms both have coefficient 1. Thus:

- The coefficient of $x^{3} y$ in the right-hand side of (4) is 4 .
- The coefficient of $x^{2} y^{3}$ in the right-hand side of (5) is 10.
- The coefficient of y^{6} in the right-hand side of (6) is 1 .

Now, those underlined numbers (coefficients) look familiar. If we just pick up those coefficients from left to right, in each line:

$$
\begin{align*}
& 1 \text {, } 1 . \tag{1}\\
& 1, \quad 2, \quad 1 . \tag{2}\\
& 1, \quad 3, \quad 3, \quad 1 \text {. } \tag{3}\\
& 1, \quad 4, \quad 6, \quad 4, \quad 1 \text {. } \tag{4}\\
& 1, \quad 5, \quad 10, \quad 10, \quad 5, \quad 1 . \tag{5}\\
& 1, \quad 6, \quad 15, \quad 20, \quad 15, \quad 6, \quad 1 \text {. } \tag{6}
\end{align*}
$$

Yes indeed: This is exactly the Pascal's triangle. So, can you guess the formula for $(x+y)^{7}$ and $(x+y)^{8} \quad$ each? Yes, according to Pascal, the list of coefficients continues as

$$
\begin{gather*}
1, \quad 7, \quad 21, \quad 35, \quad 35, \quad 21, \quad 7, \tag{7}\\
1, \tag{8}
\end{gather*} 8, \quad 28, \quad 56, \quad 70, \quad 56, \quad 28, \quad 8, \quad 1 .
$$

Accordingly,

$$
\begin{align*}
& (x+y)^{7} \tag{7}\\
= & x^{7}+\underline{\underline{7}} x^{6} y+\underline{\underline{21}} x^{5} y^{2}+\underline{\underline{35}} x^{4} y^{3}+\underline{\underline{35}} x^{3} y^{4}+\underline{\underline{21}} x^{2} y^{5}+\underline{\underline{7 x}} x y^{6}+y^{7}
\end{align*}
$$

(8) $\quad(x+y)^{8}$

$$
=x^{8}+\underline{\underline{8}} x^{7} y+\underline{\underline{28}} x^{6} y^{2}+\underline{\underline{56}} x^{5} y^{3}+\underline{\underline{70}} x^{4} y^{4}+\underline{\underline{56}} x^{3} y^{5}+\underline{\underline{35}} x^{2} y^{6}+\underline{\underline{8}} x y^{7}+y^{8} .
$$

These are indeed the correct formulas. Now, at this point I'm sure you already know how to form the correct formula for $(x+y)^{n}$ for $n=9,10, \ldots$. I want to officially formulate it. That requires me to introduce one new notation.

Notation (binomial coefficient). In the Pascal's triangle (page 1):

- The numbers in row 1, from left to right, are denoted as

- The numbers in row 2, from left to right, are denoted as

$$
\begin{array}{ccc}
\binom{2}{0}, & \binom{2}{1}, & \binom{2}{2} . \\
\| & \| & \| \\
1 & 2 & 1
\end{array}
$$

- The numbers in row 3, from left to right, are denoted as

$$
\begin{array}{cccc}
\binom{3}{0}, & \binom{3}{1}, & \binom{3}{2}, & \binom{3}{3} . \\
\| & \| & \| & \| \\
1 & \|_{3} & 3 & 1
\end{array}
$$

- The numbers in row 4, from left to right, are denoted as

$$
\begin{array}{ccccc}
\binom{4}{0}, & \binom{4}{1}, & \binom{4}{2}, & \binom{4}{3}, & \binom{4}{4} . \\
\| & \| & \| & \| & \| \\
1 & 4 & 6 & 4 & 1
\end{array}
$$

- The numbers in row 5 , from left to right, are denoted as

| $\binom{5}{0}$, | $\binom{5}{1}$, | $\binom{5}{2}$, | $\binom{5}{3}$, | $\binom{5}{4}$, |
| :---: | :---: | :---: | :---: | :---: |$\binom{5}{5}$.

More generally, in the Pascal:

- The numbers in row n, from left to right, are denoted as

$$
\binom{n}{0}, \quad\binom{n}{1}, \quad\binom{n}{2}, \quad\binom{n}{3}, \quad \cdots \quad\binom{n}{n} .
$$

These are called the binomial coefficients . Note

$$
\binom{n}{0}=1
$$

$$
\binom{n}{n}=1
$$

Example 13. $\quad\binom{6}{0}=1 . \quad\binom{6}{1}=6 . \quad\binom{6}{3}=20$.

$$
\binom{7}{2}=21 . \quad\binom{7}{5}=21 . \quad\binom{8}{4}=70 . \quad\binom{8}{7}=8
$$

\star As for the formula for $\binom{n}{k}$ for general n and k, see 'Formula A' in the next page.

- Using this new notation, we can rewrite the previous formulas as
(1) $(x+y)^{1}=\binom{1}{0} x+\binom{1}{1} y$,

$$
\begin{align*}
& (2) \quad(x+y)^{2}=\binom{2}{0} x^{2}+\binom{2}{1} x y+\binom{2}{2} y^{2}, \\
& \text { (3) } \quad(x+y)^{3}=\binom{3}{0} x^{3}+\binom{3}{1} x^{2} y+\binom{3}{2} x y^{2}+\binom{3}{3} y^{3}, \tag{2}\\
& (4) \quad(x+y)^{4}=\binom{4}{0} x^{4}+\binom{4}{1} x^{3} y+\binom{4}{2} x^{2} y^{2}+\binom{4}{3} x y^{3}+\binom{4}{4} y^{4},
\end{align*}
$$

:

Do you see the patterns? More generally, the right formula for $(x+y)^{n}$ is given below (Formula B in the next page).

Formula A (binomial coefficients).

Let n and k be integers, with $0<k<n$. Then

$$
\binom{n}{k}=\frac{n(n-1)(n-2) \cdots(n-k+1)}{1 \cdot 2 \cdot 3 \cdot \cdots \cdot k}
$$

Formula B (Binomial Formula). Let n be a positive integer. Then

$$
\begin{aligned}
& (x+y)^{n} \\
& \quad=\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\binom{n}{3} x^{n-3} y^{3}+\cdots \\
& \quad+\binom{n}{n-3} x^{3} y^{n-3}+\binom{n}{n-2} x^{2} y^{n-2}+\binom{n}{n-1} x y^{n-1}+\binom{n}{n} y^{n} .
\end{aligned}
$$

Exercise 4. Spell out each of the following binomial coefficients, in the fraction form. You don't have to calculate the answers.

$$
\binom{9}{5}, \quad\binom{10}{7}, \quad\binom{11}{6}, \quad\binom{14}{2}, \quad\binom{15}{0}, \quad\binom{18}{11}
$$

$[$ Answers $]: \quad\binom{9}{5}=\frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}, \quad\binom{10}{7}=\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7}$,

$$
\begin{aligned}
& \binom{11}{6}=\frac{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} . \quad\binom{14}{2}=\frac{14 \cdot 13}{1 \cdot 2} . \\
& \binom{15}{0}=\frac{1}{1} . \quad\binom{18}{11}=\frac{18 \cdot 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot 11}
\end{aligned}
$$

Exercise 5. Spell out the binomial formula for each of
(a) $(x+y)^{5}$,
(b) $\quad(x+y)^{8}, \quad$ and
(c) $\quad(x+y)^{9}$.

In each of (a), (b), (c), first give the formula that includes the notation $\binom{n}{k}$. Then convert those $\binom{n}{k}$ into numbers and rewrite your answer accordingly.
$[$ Answers $]:$ (a) $(x+y)^{5}$

$$
\begin{aligned}
& =\binom{5}{0} x^{5}+\binom{5}{1} x^{4} y+\binom{5}{2} x^{3} y^{2}+\binom{5}{3} x^{2} y^{3}+\binom{5}{4} x y^{4}+\binom{5}{5} y^{5} \\
& =x^{5}+5 x^{4} y+10 x^{3} y^{2}+10 x^{2} y^{3}+5 x y^{4}+y^{5},
\end{aligned}
$$

(b) $(x+y)^{8}$

$$
\begin{aligned}
= & \binom{8}{0} x^{8}+\binom{8}{1} x^{7} y+\binom{8}{2} x^{6} y^{2}+\binom{8}{3} x^{5} y^{3}+\binom{8}{4} x^{4} y^{4} \\
& +\binom{8}{5} x^{3} y^{5}+\binom{8}{6} x^{2} y^{6}+\binom{8}{7} x y^{7}+\binom{8}{8} y^{8} \\
= & x^{8}+8 x^{7} y+28 x^{6} y^{2}+56 x^{5} y^{3}+70 x^{4} y^{4} \\
& +56 x^{3} y^{5}+28 x^{2} y^{6}+8 x y^{7}+y^{8} .
\end{aligned}
$$

(c) $(x+y)^{9}$

$$
\begin{aligned}
= & \binom{9}{0} x^{9}+\binom{9}{1} x^{8} y+\binom{9}{2} x^{7} y^{2}+\binom{9}{3} x^{6} y^{3}+\binom{9}{4} x^{5} y^{4} \\
& +\binom{9}{5} x^{4} y^{5}+\binom{9}{6} x^{3} y^{6}+\binom{9}{7} x^{2} y^{7}+\binom{9}{8} x y^{8}+\binom{9}{9} y^{9} \\
= & x^{9}+9 x^{8} y+36 x^{7} y^{2}+84 x^{6} y^{3}+126 x^{5} y^{4} \\
& +126 x^{4} y^{5}+84 x^{3} y^{6}+36 x^{2} y^{7}+9 x y^{8}+y^{9}
\end{aligned}
$$

- \quad Pop quiz.

How much does it make it you add up the numbers in one whole row in Pascal?

Let's experiment:

Row 1: $\quad 1+1=2$.

Row 2: $\quad 1+2+1=4$.

Row 3: $\quad 1+3+3+1=8$.
Row 4: $\quad 1+4+6+4+1=16$.
Row 5: $\quad 1+5+10+10+5+1=32$.

Row 6: $\quad 1+6+15+20+15+6+1=64$.

Row 7: $\quad 1+7+21+35+35+21+7+1=128$.

To align the answers:

$$
2, \quad 4, \quad 8, \quad 16, \quad 32, \quad 64, \quad 128, \quad \cdots .
$$

So, these numbers look familiar, right? Yes, they are 2-to-the-powers . More precisely:

Fact. The sum of the numbers in the n-th row of Pascal equals 2^{n}.

What I mean by this is that, it is not just for Row 1 -Row 7 , but if you do the same for the lower rows, the same is always true. But why? The clue is, this is a simple application of the Binomial Formula (Formula B above). I will leave it as your own exercise to figure it out. If you need further clue: Substituting some appropriate number for each of x and y in the Binomial Formula would do it. So, figure out those numbers to be substituted for each of x and y.

Exercise 6. Explain why the following fact follows from the Binomial Theorem:

Fact. The sum of the numbers in the n-th row of Pascal equals 2^{n}.

Indicate what number to substitute for each of x and y in the Binomial Formula.
[Answer]: Substituting $x=1$ and $y=1$ in the Binomial Formula
yields

$$
\begin{aligned}
(1+1)^{n}= & \binom{n}{0} \cdot 1^{n}+\binom{n}{1} \cdot 1^{n-1} \cdot 1^{1}+\binom{n}{2} \cdot 1^{n-2} \cdot 1^{2}+\cdots \\
& +\binom{n}{n-2} \cdot 1^{2} \cdot 1^{n-2}+\binom{n}{n-1} \cdot 1^{1} \cdot 1^{n-1}+\binom{n}{n} \cdot 1^{n} \\
= & \binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n-2}+\binom{n}{n-1}+\binom{n}{n} .
\end{aligned}
$$

In short,

$$
2^{n}=\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n-2}+\binom{n}{n-1}+\binom{n}{n}
$$

