Math 105 TOPICS IN MATHEMATICS REVIEW OF LECTURES – VI

February 2 (Mon), 2015

Instructor: Yasuyuki Kachi

Line #: 52920.

§6. CUBES.

• We can similarly define the notion of cubes/cubing . Like we did last time,

 2^3 : " two cube." 5^3 : " five cube." 10^3 : " ten cube."

Now, the meaning of these:

 $2^3 = 2 \cdot 2 \cdot 2 = 8.$ $5^3 = 5 \cdot 5 \cdot 5 = 125.$ $10^3 = 10 \cdot 10 \cdot 10 = 1000.$

So cubing of a number means you multiply out three replicas of that number. More generally, x^3 is called "x cube", or sometimes "the cube of x".

$$x^3 = x \cdot x \cdot x$$

Clearly

$$x^3 = x^2 \cdot x$$
 , or the same $x^3 = x \cdot x^2$.

Example 0.	Find	0^{3} .		
Solution.		0^{3}	=	0 • 0 • 0
Example 1.	Find	1^{3} .		
Solution.		1^{3}	=	$1 \cdot 1 \cdot 1$

Example 2. Find 3^3 .

Solution. $3^3 = 3 \cdot 3 \cdot 3 = 27.$

0.

1.

=

=

Example 3. Find 4^3 .

Solution. $4^3 = 4 \cdot 4 \cdot 4 = 64.$

Example 4. Find 6^3 .

Solution. $6^3 = 6 \cdot 6 \cdot 6 = 216.$

Example 5. Find 7^3 .

Solution. $7^3 = 7 \cdot 7 \cdot 7 = 343.$

Example 6. Find 8^3 .

Solution. $8^3 = 8 \cdot 8 \cdot 8 = 512.$

Example 7. Find 9^3 .

Solution. $9^3 = 9 \cdot 9 \cdot 9 = 729.$

Example 8. Find 11^3 .

Solution. $11^3 = 11 \cdot 11 \cdot 11 = 1331.$

• Cubes of integers between 0—19.

x	0	1	2	3	4	5	6	7	8	9
x^3	0	1	8	27	64	125	216	343	512	729
		1								
x	10	11	12	13	14	15	16	17	18	19
x^3	1000	1331	1728	2197	2744	3375	4096	4913	5832	6859

 \star $\;$ Get used to expressions like

(a)
$$\left(x+1\right)^3$$
,

(b)
$$\left(x+2\right)^3$$
,

(c)
$$\left(x+3\right)^3$$
,

(d)
$$\left(x+4\right)^3$$
,

and so forth.

Example 8. Substitute
$$x = 4$$
 in $(x+1)^3$. Calculate the result.
Solution. $(4+1)^3 = 5^3 = 125.$

Example 9. Substitute
$$x = 5$$
 in $(x+2)^3$. Calculate the result.
Solution. $(5+2)^3 = 7^3 = 343.$

Example 10. Substitute
$$x = 7$$
 in $(x+3)^3$. Calculate the result.
Solution. $(7+3)^3 = 10^3 = 1000.$

• Expansions.

(a)
$$\left(x+\underline{1}\right)^{3} = x^{3} + \underline{3}x^{2} + \underline{3}x + \underline{1}$$
.
(b) $\left(x+\underline{2}\right)^{3} = x^{3} + \underline{6}x^{2} + \underline{12}x + \underline{8}$.
(c) $\left(x+\underline{3}\right)^{3} = x^{3} + \underline{9}x^{2} + \underline{27}x + \underline{27}$.
(d) $\left(x+\underline{4}\right)^{3} = x^{3} + \underline{12}x^{2} + \underline{48}x + \underline{64}$.
(e) $\left(x+\underline{5}\right)^{3} = x^{3} + \underline{15}x^{2} + \underline{75}x + \underline{125}$.
(f) $\left(x+\underline{6}\right)^{3} = x^{3} + \underline{18}x^{2} + \underline{108}x + \underline{216}$.
(g) $\left(x+\underline{7}\right)^{3} = x^{3} + \underline{21}x^{2} + \underline{147}x + \underline{343}$.
(h) $\left(x+\underline{8}\right)^{3} = x^{3} + \underline{24}x^{2} + \underline{192}x + \underline{512}$.
(j) $\left(x+\underline{10}\right)^{3} = x^{3} + \underline{27}x^{2} + \underline{243}x + \underline{729}$.

Meaning:

These identities are all true, no matter what number you substitute for x.

Patterns:
$$\left(x + \boxed{a}\right)^3 = x^3 + \boxed{3a}x^2 + \boxed{3a^2}x + \boxed{a^3}$$

multiply by 3
square, then multiply by 3

cube

Example 11. Substitute x = 2 in each of the two sides of (d). Calculate the results separately. Do they match?

Solution. Let's duplicate (d):

(d)
$$\left(x+4\right)^3 = x^3 + 12 x^2 + 48 x + 64$$

Once x = 2 is substituted,

The left-hand side of (d) = $(2+4)^3 = 6^3 = 216$,

The right-hand side of (d) = $2^3 + 12 \cdot 2^2 + 48 \cdot 2 + 64$

$$= 8 + 48 + 96 + 64 = 216$$

• So, as you can see, no matter what number you substitute for x, the formulas (a)–(j) are true. Once again,

Patterns:

$$\left(x+a\right)^3 = x^3 + 3 a x^2 + 3 a^2 x + a^3$$

Now, just like last time (when we talked about the square formula), in this cube formula, two letters x and a are involved. Though we originally had x, there arose the necessity to adopt a as the second letter. This is for demonstrating the 'patterns' in the formulas (a)—(j). So, like last time, let's regard the above as a more general formula, one that covers (a)—(j) as ten different special cases. Also, like last time, we could have actually chosen the letter y instead of a. So

Formula A.

$$(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$$

.

Or, if you prefer a and b, instead of x and y, then that's perfectly fine, the same can be written as

Formula A.

$$\left(a + b\right)^3 = a^3 + 3 a^2 b + 3 a b^2 + b^3$$

Once again:

Meaning:

These formulas are all true, no matter what numbers you substitute

for x, y, a and b each.

Another related formula:

Formula B.

(a)
$$x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2})$$
,
(b) $x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2})$.

Example 12. Substitute x = 3 and y = 1 in each of the two sides of Formula B, part (a). Calculate the results separately. Confrim that they match.

Solution. Let's duplicate Formula B, part (a):

(a)
$$x^3 + y^3 = (x + y)(x^2 - xy + y^2)$$

Once x = 3 and y = 1 are substituted,

The left-hand side of (a) = $3^3 + 1^3 = 27 + 1 = 28$, The right-hand side of (a) = $(3+1)(3^2 - 3 \cdot 1 + 1^2)$ = $4 \cdot (9 - 3 + 1) = 4 \cdot 7 = 28$

Example 13. Substitute x = 5 and y = 2 in each of the two sides of Formula B, part (b). Calculate the results separately. Confrim that they match.

Solution. Let's duplicate Formula B, part (b):

(b)
$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

Once x = 5 and y = 2 are substituted,

The left-hand side of (b) = $5^3 - 2^3 = 125 - 8 = 117$, The right-hand side of (b) = $(5-2)(5^2 + 5 \cdot 2 + 2^2)$ = $3 \cdot (25 + 10 + 4) = 3 \cdot 39 = 117$ \star – Below are some tweaks (you don't have to memorize them):

Formula C.

$$\left(x+y+z\right)^{3}$$

= $x^{3}+y^{3}+z^{3}+3\left(x+y\right)\left(x+z\right)\left(y+z\right).$

Formula D.

$$x^{3} + y^{3} + z^{3} - 3xyz$$

= $\left(x + y + z\right)\left(x^{2} + y^{2} + z^{2} - xy - xz - yz\right).$

Formula E.

$$x^{3} + y^{3} + z^{3} - (x+y)(x+z)(y+z) + 4xyz$$
$$= (-x+y+z)(x-y+z)(x+y-z).$$

Formula F.

$$\begin{pmatrix} x+y \end{pmatrix} \begin{pmatrix} x+z \end{pmatrix} \begin{pmatrix} y+z \end{pmatrix} + xyz = \begin{pmatrix} x+y+z \end{pmatrix} \begin{pmatrix} xy+xz+yz \end{pmatrix}.$$

- \star ~ Note that Formula F does not involve cubes, but it is related so included.
- * In what follows some negative numbers are involved (see Example 14 below).

Formula D'. If a, b and c satisfy

$$a + b + c = 0$$

,

then

$$a^3 + b^3 + c^3 = 3 \, a \, b \, c$$

Formula D". If a, b, c, p, q and r satisfy

p =	a + b,	
q =	a + c,	and
r =	b + c	

then

$$p^{3} + q^{3} + r^{3} - 3pqr = 2\left(a^{3} + b^{3} + c^{3} - 3abc\right)$$

• Cubing a negative number. We have

$$\begin{pmatrix} -1 \end{pmatrix}^{3} = \begin{pmatrix} -1 \end{pmatrix} \cdot \begin{pmatrix} -1 \end{pmatrix} \cdot \begin{pmatrix} -1 \end{pmatrix} \cdot \begin{pmatrix} -1 \end{pmatrix} = 1 \cdot \begin{pmatrix} -1 \end{pmatrix} = -1,$$
$$\begin{pmatrix} -2 \end{pmatrix}^{3} = \begin{pmatrix} -2 \end{pmatrix} \cdot \begin{pmatrix} -2 \end{pmatrix} \cdot \begin{pmatrix} -2 \end{pmatrix} \cdot \begin{pmatrix} -2 \end{pmatrix} = 4 \cdot \begin{pmatrix} -2 \end{pmatrix} = -8,$$
$$\begin{pmatrix} -3 \end{pmatrix}^{3} = \begin{pmatrix} -3 \end{pmatrix} \cdot \begin{pmatrix} -3 \end{pmatrix} \cdot \begin{pmatrix} -3 \end{pmatrix} \cdot \begin{pmatrix} -3 \end{pmatrix} = 9 \cdot \begin{pmatrix} -3 \end{pmatrix} = -27,$$

and so on. More generally,

$$\left(-a\right)^3 = -a^3$$

•

Example 14. (1) Agree that if you substitute

$$a = 2, \qquad b = 1 \qquad \text{and} \qquad c = -3$$

in a + b + c, then the result is 0.

(2) Substitute

$$a = 2,$$
 $b = 1$ and $c = -3$

in each of $a^3 + b^3 + c^3$, and 3 a b c, and confirm that the results match.

Solution. (1) 2 + 1 + (-3) clearly equals 0.

(2)
$$a^3 + b^3 + c^3 = 2^3 + 1^3 + (-3)^3 = 8 + 1 + (-27) = -18,$$

whereas $3 a b c = 3 \cdot 2 \cdot 1 \cdot (-3) = -18.$

Example 15. (1) Substitute

$$a = 3, \qquad b = -2 \qquad \text{and} \qquad c = 4$$

 in

$$p = a + b,$$

 $q = a + c,$ and
 $r = b + c$

(2) Substitute the values a, b, c, p, q and r as in (1) in each of

$$p^{3} + q^{3} + r^{3} - 3pqr$$
 and $2\left(a^{3} + b^{3} + c^{3} - 3abc\right)$,

and confirm that the results match.

Solution. (1)
$$p = 3 + (-2) = 1$$
. $q = 3 + 4 = 7$. $r = (-2) + 4 = 2$
(2) Substituting $p = 1$, $q = 7$ and $r = 2$ in

$$p^3 + q^3 + r^3 - 3pqr$$

yields

$$1^3 + 7^3 + 2^3 - 3 \cdot 1 \cdot 7 \cdot 2 = 1 + 343 + 8 - 42 = 310.$$

Meanwhile, substituting a = 3, b = -2 and c = 4 in

2
$$\left(a^3 + b^3 + c^3 - 3 a b c\right)$$

yields

$$2 \cdot \left(3^{3} + (-2)^{3} + 4^{3} - 3 \cdot 3 \cdot (-2) \cdot 4\right) = 2 \cdot \left(27 - 8 + 64 + 72\right)$$
$$= 2 \cdot 155 = 310.$$

 \star Just like the last item in the previous set of notes ("Review of Lectures – V"), you don't have to know the following (yet), as it involves a <u>determinant</u>. Some of you might have seen it before thus included. We might cover determinants later.

Formula G.*

a	b	c	
c	a	b	$= a^3 + b^3 + c^3 - 3 a b c.$
b	c	a	

Formula H.

	$\begin{array}{c}a+b+c\\3b\\3b\end{array}$	3a $a+b+c$ $3b$	3a $3a$ $a+b+c$	+ 27 a b c	_	$\left(a+b+c\right)^3$.
--	--	-----------------	-----------------	------------	---	--------------------------

Formula I.

$$\begin{vmatrix} a^{2} + b^{2} - c^{2} - d^{2} & 2(bc + ad) & 2(bd - ac) \\ 2(bc - ad) & a^{2} - b^{2} + c^{2} - d^{2} & 2(cd + ab) \\ 2(bd + ac) & 2(cd - ab) & a^{2} - b^{2} - c^{2} + d^{2} \end{vmatrix}$$
$$= \left(a^{2} + b^{2} + c^{2} + d^{2}\right)^{3}.$$

^{*}Suggested by my colleague, Professor Pavlos Tzermias.