Math 105 TOPICS IN MATHEMATICS REVIEW OF LECTURES – V

January 30 (Fri), 2015

Instructor: Yasuyuki Kachi

Line #: 52920.

§5. SQUARES.

• Today we learn <u>squares/squaring</u>. This is quintessentially important. I cannot imagine math without squares. First, notation and pronunciation:

3^2	:	"three	square."		
5^2	:	"five s	square. "		

 10^2 : "ten square."

Now, the meaning of these:

3^{2}	=	3	•	3	=	9.
5^2	=	5	•	5	=	25.
10^{2}	=	10		10	=	100.

So squaring of a number means you multiply out two replicas of that number. More generally, x^2 is called "<u>x</u> square", or sometimes "<u>the square of x</u>". It means you multiply x with x. So

$$x^2 = x \cdot x$$

Question. Why not just write $x \cdot x$?

The notation x^2 is more convenient. We will appreciate this notation more as the semester progresses.

Example 0.	Find	0^{2} .
Solution.		$0^2 = 0 \cdot 0 = 0.$
Example 1.	Find	1^2 .
Solution.		$1^2 = 1 \cdot 1 = 1.$
Example 2.	Find	2^2 .
Solution.		$2^2 = 2 \cdot 2 = 4.$
Example 3.	Find	4^2 .
Solution.		$4^2 = 4 \cdot 4 = 16.$
Example 4.	Find	6^{2} .
Solution.		$6^2 = 6 \cdot 6 = 36.$

Example 5. Find 7^2 .

Solution. $7^2 = 7 \cdot 7 = 49.$

Example 6. Find 8^2 .

Solution. $8^2 = 8 \cdot 8 = 64.$

Example 7. Find 9^2 .

Solution. $9^2 = 9 \cdot 9 = 81.$

• Squares of integers between 0—19.

x	0	1	2	3	4	5	6	7	8	9
x^2	0	1	4	9	16	25	36	49	64	81
x	10	11	12	13	14	15	16	17	18	19
x^2	100	121	144	169	196	225	256	289	324	361

 \star – Get used to expressions like

(a)
$$\left(x+1\right)^2$$
,

(b)
$$\left(x+2\right)^2$$
,

(c)
$$\left(x+3\right)^2$$
,

(d)
$$\left(x+4\right)^2$$
,

and so forth.

Example 8. Substitute
$$x = 3$$
 in $(x+1)^2$. Calculate the result.
Solution. $(3+1)^2 = 4^2 = 16.$

Example 9. Substitute
$$x = 6$$
 in $(x+2)^2$. Calculate the result.
Solution. $(6+2)^2 = 8^2 = 64.$

Example 10. Substitute
$$x = 8$$
 in $(x+3)^2$. Calculate the result.
Solution. $(8+3)^2 = 11^2 = 121.$

• Expansions.

(a)
$$(x+\underline{1})^2 = x^2 + \underline{2}x + \underline{1}$$
.
(b) $(x+\underline{2})^2 = x^2 + \underline{4}x + \underline{4}$.
(c) $(x+\underline{3})^2 = x^2 + \underline{6}x + \underline{9}$.
(d) $(x+\underline{4})^2 = x^2 + \underline{8}x + \underline{16}$.
(e) $(x+\underline{5})^2 = x^2 + \underline{10}x + \underline{25}$.
(f) $(x+\underline{6})^2 = x^2 + \underline{12}x + \underline{36}$.
(g) $(x+\underline{7})^2 = x^2 + \underline{14}x + \underline{49}$.
(h) $(x+\underline{8})^2 = x^2 + \underline{16}x + \underline{64}$.
(i) $(x+\underline{9})^2 = x^2 + \underline{18}x + \underline{81}$.
(j) $(x+\underline{10})^2 = x^2 + \underline{20}x + \underline{100}$.

Meaning:

These identities are all true, no matter what number you substitute for x.

Patterns:
$$\left(\begin{array}{ccc} x + \boxed{a} \end{array}\right)^2 = x^2 + \boxed{2a} x + \boxed{a^2}$$

multiply by 2

square

Example 11. Substitute x = 2 in each of the two sides of (e). Calculate the results separately. Do they match?

Solution. Let's duplicate (e):

(e)
$$(x+5)^2 = x^2 + 10x + 25$$

Once x = 2 is substituted,

The left-hand side of (e) = $(2+5)^2 = 7^2 = 49$

The right-hand side of (e) = $2^2 + 10 \cdot 2 + 25 = 4 + 20 + 25 = 49$

Example 12. Substitute x = 3 in each of the two sides of (g). Calculate the results separately. Do they match?

Solution. Let's duplicate (g):

(g)
$$(x+7)^2 = x^2 + 14x + 49$$

Once x = 3 is substituted,

The left-hand side of (g) = $(3+7)^2 = 10^2 = 100$

The right-hand side of (g) = $3^2 + 14 \cdot 3 + 49 = 9 + 42 + 49 = 100$

• So, as you can see, no matter what number you substitute for x, the formulas (a)–(j) are true. Once again,

Patterns:

$$\left(x + a\right)^2 = x^2 + 2 a x + a^2$$

Now, in this formula two letters x and a are involved. Actually, x was the original letter which we were using. Then there arose the necessity to adopt another letter a for the purpose of demonstrating the 'patterns' in the formulas (a)—(j) (in page 5). Now, we may regard the above as a more general formula, a formula that covers (a)—(j) as ten different special cases at once. In other words, we may substitute any number you like for x and for a each in the above formula. Here, there is no logical reason we should choose a as the second letter. What's next to x in the alphabet is y, so we could have actually written the formula as

Formula A.

$$(x+y)^2 = x^2 + 2xy + y^2$$

Or, if you prefer a and b, instead of x and y, then that's perfectly fine, the same can be written as

Formula A.
$$(a + b)^2 = a^2 + 2 a b + b^2$$

Once again:

Meaning:

These formulas are all true, no matter what numbers you substitute

for x, y, a and b each.

In what follows, I sometimes use x, y, z, \ldots , and some other times a, b, c, \ldots

 \star Now, here is another related formula (very important):

Formula B.
$$x^2 - y^2 = (x + y)(x - y)$$

 \star Here are some tweaks:

Formula C.
$$\left(x + y\right)^2 - \left(x - y\right)^2 = 4xy$$

Formula D.

$$\left(x^{2} + y^{2}\right)^{2} - 4x^{2}y^{2} = \left(x + y\right)^{2}\left(x - y\right)^{2}.$$

Formula E.

$$\begin{pmatrix} x^2 + y^2 + z^2 \end{pmatrix}^2 - 4 \begin{pmatrix} x^2 y^2 + x^2 z^2 + y^2 z^2 \end{pmatrix}$$
$$= \begin{pmatrix} x+y+z \end{pmatrix} \cdot \begin{pmatrix} x-y-z \end{pmatrix} \cdot \begin{pmatrix} -x+y-z \end{pmatrix} \cdot \begin{pmatrix} -x-y+z \end{pmatrix}.$$

* Formula E has a connection with geometry. More precisely, the two sides of Formula E are precisely the negative of the square of the area of the triangle whose edges have lengths x, y and z (Heron's formula).

 \star ~ The following is a tweak of Formula E.

Formula F.

$$\begin{pmatrix} a^2 - b^2 - c^2 + d^2 \end{pmatrix}^2 - 4 \begin{pmatrix} a d - b c \end{pmatrix}^2$$

$$= \begin{pmatrix} a^2 + b^2 + c^2 + d^2 \end{pmatrix}^2$$

$$- 4 \begin{pmatrix} a^2 b^2 + a^2 c^2 + a^2 d^2 + b^2 c^2 + b^2 d^2 + c^2 d^2 \end{pmatrix}$$

$$+ 8 \ a \ b \ c \ d$$

$$= \begin{pmatrix} a + b + c + d \end{pmatrix} \cdot \begin{pmatrix} a + b - c - d \end{pmatrix}$$

$$\cdot \begin{pmatrix} a - b + c - d \end{pmatrix} \cdot \begin{pmatrix} a - b - c + d \end{pmatrix}$$

$$\begin{pmatrix} a & b & c & d \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a \end{pmatrix} \end{pmatrix} .$$

 \star In the last one, you see a formation (enclosed in the big parenthesis)

You don't have to know what it is (yet). It is called <u>the determinant</u>. Some of you might have seen it somewhere. We might go over the basics of determinants later in the semester (if the time permits).