Math 105 TOPICS IN MATHEMATICS REVIEW OF LECTURES - V

January 30 (Fri), 2015
Instructor: Yasuyuki Kachi
Line \#: 52920.

§5. Squares.

- Today we learn squares/squaring . This is quintessentially important. I cannot imagine math without squares. First, notation and pronunciation:

$$
\begin{aligned}
3^{2} & : \quad \text { "three square." } \\
5^{2} & : \quad \text { "five square." } \\
10^{2} & : \quad \text { "ten square." }
\end{aligned}
$$

Now, the meaning of these:

$$
\begin{aligned}
3^{2} & =3 \cdot 3=9 \\
5^{2} & =5 \cdot 5=25 \\
10^{2} & =10 \cdot 10=100
\end{aligned}
$$

So squaring of a number means you multiply out two replicas of that number. More generally, x^{2} is called " x square", or sometimes "the square of x ". It means you multiply x with x. So

$$
x^{2}=x \cdot x
$$

Question. Why not just write $x \cdot x$?

The notation x^{2} is more convenient. We will appreciate this notation more as the semester progresses.

Example 0. Find 0^{2}.

Solution. $\quad 0^{2}=0 \cdot 0=0$.

Example 1. Find 1^{2}.

Solution. $\quad 1^{2}=1 \cdot 1=1$.

Example 2. Find 2^{2}.

Solution. $\quad 2^{2}=2 \cdot 2=4$.

Example 3. Find 4^{2}.

Solution.

$$
4^{2}=4 \cdot 4=16 .
$$

Example 4. Find 6^{2}.

Solution.

$$
6^{2}=6 \cdot 6=36 .
$$

Example 5. Find 7^{2}.

Solution. $\quad 7^{2}=7 \cdot 7=49$.

Example 6. Find 8^{2}.

Solution. $\quad 8^{2}=8 \cdot 8=64$.

Example 7. Find 9^{2}.

Solution. $\quad 9^{2}=9 \cdot 9=81$.

- Squares of integers between 0-19.

x	0	1	2	3	4	5	6	7	8	9
x^{2}	0	1	4	9	16	25	36	49	64	81

x	10	11	12	13	14	15	16	17	18	19
x^{2}	100	121	144	169	196	225	256	289	324	361

* Get used to expressions like
(a) $\quad(x+1)^{2}$,
(b) $\quad(x+2)^{2}$,
(c) $\quad(x+3)^{2}$,
(d) $\quad(x+4)^{2}$,
and so forth.

Example 8. Substitute	$x=3$
in $(x+1)^{2}$. Calculate the result.	

Solution. $\quad(3+1)^{2}=4^{2}=16$.

Example 9. $\xlongequal{\text { Substitute }}$| $x=6$. |
| :---: |
| $(x+2)^{2}$. Calculate the result. |
| in |

Solution. $\quad(6+2)^{2}=8^{2}=64$.

Example 10. Substitute | $x=8$ |
| :---: |
| in $(x+3)^{2}$. Calculate the result. |

Solution. $\quad(8+3)^{2}=11^{2}=121$.

- Expansions.
(a)

$$
(x+\underline{\underline{1}})^{2}=x^{2}+\underline{\underline{2}} x+\underline{\underline{1}}
$$

(b)
$(x+\underline{\underline{2}})^{2}=x^{2}+\underline{\underline{4}} x+\underline{\underline{4}}$.
(c)
$(x+\underline{\underline{3}})^{2}=x^{2}+\underline{\underline{6}} x+\underline{\underline{9}}$.
(d)
$(x+\underline{\underline{4}})^{2}=x^{2}+\underline{\underline{8}} x+\underline{\underline{16}}$.
(e)
$(x+\underline{\underline{5}})^{2}=x^{2}+\underline{\underline{10}} x+\underline{\underline{25}}$.
$(x+\underline{\underline{6}})^{2}=x^{2}+\underline{\underline{12}} x+\underline{\underline{36}}$.
(g)
$(x+\underline{\underline{7}})^{2}=x^{2}+\underline{\underline{14}} x+\underline{\underline{49}}$.
(h)
$(x+\underline{\underline{8}})^{2}=x^{2}+\underline{\underline{16}} x+\underline{\underline{64}}$.
$(x+\underline{\underline{9}})^{2}=x^{2}+\underline{\underline{18}} x+\underline{\underline{81}}$.
(j)
$(x+\underline{\underline{10}})^{2}=x^{2}+\underline{\underline{20}} x+\underline{\underline{100}}$.

Meaning:

These identities are all true, no matter what number you substitute for x.

Patterns:

Example 11. Substitute $x=2$ in each of the two sides of (e). Calculate the results separately. Do they match?

Solution. Let's duplicate (e):
(e)

$$
(x+5)^{2}=x^{2}+10 x+25
$$

Once $\quad x=2 \quad$ is substituted,
The left-hand side of $(\mathrm{e})=(2+5)^{2}=7^{2}=49$,
The right-hand side of $(\mathrm{e})=2^{2}+10 \cdot 2+25=4+20+25=49$.

Example 12. Substitute $x=3$ in each of the two sides of (g). Calculate the results separately. Do they match?

Solution. Let's duplicate (g):

$$
\begin{equation*}
(x+7)^{2}=x^{2}+14 x+49 \tag{g}
\end{equation*}
$$

Once $\quad x=3 \quad$ is substituted,
The left-hand side of $(\mathrm{g})=(3+7)^{2}=10^{2}=100$,
The right-hand side of $(\mathrm{g})=3^{2}+14 \cdot 3+49=9+42+49=100$.

- So, as you can see, no matter what number you substitute for x, the formulas (a)-(j) are true. Once again,

Patterns:

$$
(x+a)^{2}=x^{2}+2 a x+a^{2}
$$

Now, in this formula two letters x and a are involved. Actually, x was the original letter which we were using. Then there arose the necessity to adopt another letter a for the purpose of demonstrating the 'patterns' in the formulas (a) - (j) (in page 5). Now, we may regard the above as a more general formula, a formula that covers (a)-(j) as ten different special cases at once. In other words, we may substitute any number you like for x and for a each in the above formula. Here, there is no logical reason we should choose a as the second letter. What's next to x in the alphabet is y, so we could have actually written the formula as

Formula A.

$$
(x+y)^{2}=x^{2}+2 x y+y^{2}
$$

Or, if you prefer a and b, instead of x and y, then that's perfectly fine, the same can be written as

Formula A. $\quad(a+b)^{2}=a^{2}+2 a b+b^{2}$

Once again:

Meaning:

These formulas are all true, no matter what numbers you substitute
for x, y, a and b each.

In what follows, I sometimes use $x, y, z, . .$, and some other times $a, b, c, .$.
\star Now, here is another related formula (very important):

Formula B. $\quad x^{2}-y^{2}=(x+y)(x-y)$

* Here are some tweaks:

Formula C. $\quad(x+y)^{2}-(x-y)^{2}=4 x y$

Formula D.

$$
\left(x^{2}+y^{2}\right)^{2}-4 x^{2} y^{2}=(x+y)^{2}(x-y)^{2}
$$

Formula E.

$$
\begin{aligned}
& \left(x^{2}+y^{2}+z^{2}\right)^{2}-4\left(x^{2} y^{2}+x^{2} z^{2}+y^{2} z^{2}\right) \\
& =(x+y+z) \cdot(x-y-z) \cdot(-x+y-z) \cdot(-x-y+z)
\end{aligned}
$$

\star Formula E has a connection with geometry. More precisely, the two sides of Formula E are precisely the negative of the square of the area of the triangle whose edges have lengths x, y and z (Heron's formula).
\star The following is a tweak of Formula E.

Formula F.

$$
\begin{aligned}
& \left(a^{2}-b^{2}-c^{2}+d^{2}\right)^{2}-4(a d-b c)^{2} \\
& =\quad\left(a^{2}+b^{2}+c^{2}+d^{2}\right)^{2} \\
& -4\left(a^{2} b^{2}+a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2}+c^{2} d^{2}\right) \\
& +8 a b c d \\
& =(a+b+c+d) \cdot(a+b-c-d) \\
& \cdot(a-b+c-d) \cdot(a-b-c+d) \\
& \left(=\left|\begin{array}{llll}
a & b & c & d \\
b & a & d & c \\
c & d & a & b \\
d & c & b & a
\end{array}\right|\right) \text {. }
\end{aligned}
$$

* In the last one, you see a formation (enclosed in the big parenthesis)
$\left|\begin{array}{llll}a & b & c & d \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a\end{array}\right|$

You don't have to know what it is (yet). It is called the determinant. Some of you might have seen it somewhere. We might go over the basics of determinants later in the semester (if the time permits).

