Math 105 TOPICS IN MATHEMATICS REVIEW OF LECTURES - IV (SUPPLEMENT)

January 28 (Wed), 2015
Instructor: Yasuyuki Kachi
Line \#: 52920.
Appendix to §4. Get used to letters. Substitutions. Shifts.

- FAQ. What is the role of letters in mathematics?
- Answer. Letters represent numbers.

In other words, a letter is to be substituted by a number.

Today, I only use the letter n.

Example 1. Substitute $n=5$ in $n+1$.

Solution. $\quad 5+1=6$.

Example 2. $\xlongequal{\text { Substitute }} n=3$ in $n+2$.

Solution. $\quad 3+2=5$.

Example 3. $\xlongequal{\text { Substitute }} n=11$ in $n+3$.

Solution.

$$
11+3=14
$$

Example 4. $\xlongequal{\text { Substitute }} n=20$ in $n+4$.

Solution. $\quad 20+4=24$.

Example 5. $\xlongequal{\text { Substitute }}$| $n=1$ |
| :---: |
| in $\frac{1}{2} n(n+1)$ | .

Solution.

$$
\frac{1}{2} \cdot 1 \cdot 2=1
$$

Example 6. $\xlongequal{\text { Substitute }} \quad n=4$ in $\frac{1}{2} n(n+1)$.

Solution.

$$
\frac{1}{2} \cdot 4 \cdot 5=10
$$

Example 7. $\xlongequal{\text { Substitute }} n=6$ in $\frac{1}{6} n(n+1)(n+2)$.

Solution.

$$
\frac{1}{6} \cdot 6 \cdot 7 \cdot 8=56
$$

Example 8. $\xlongequal{\text { Substitute }} \quad n=9 \quad$ in $\frac{1}{24} n(n+1)(n+2)(n+3)$.

Solution. $\quad \frac{1}{24} \cdot 9 \cdot 10 \cdot 11 \cdot 12=495$.
\star Get used to expressions like
(a) $1+2+3+4+5+\cdots+n$,
(b)

$$
1+3+6+10+15+\cdots+\frac{1}{2} n(n+1)
$$

(c)

$$
1+4+10+15+21+\cdots+\frac{1}{6} n(n+1)(n+2)
$$

\star The meaning of (a) is self-evident.
\star (b) is as follows:

Arrows point the outcomes of substituting the indicated numbers in $\frac{1}{2} n(n+1)$.
\star Similarly, (c) is as follows:

Once again, arrows point the outcomes of substituting the indicated numbers in $\frac{1}{6} n(n+1)(n+2)$.

Example 9. $\xlongequal{\text { Substitute }} \quad n=8$ in $1+2+3+4+5+\cdots+n$
First spell out the outcome, and then calculate it.

Solution. $\quad 1+2+3+4+5+6+7+8=36$.

Example 10. $\xlongequal{\text { Substitute }} n=6$ in $1+3+6+10+\cdots+\frac{1}{2} n(n+1)$.

First spell out the outcome, and then calculate it.

Solution. $\quad 1+3+6+10+15+21=56$.

- Shift.

Among important operations in mathematics is the 'shift' of the letter n. Shift means you

$$
\xlongequal{\text { substitute }} n \text { by } n+1 \text {. }
$$

So, every single n spotted in the given formation is getting replaced with $n+1$. We denote the shift by $\quad n \mapsto n+1$.

Example 11. $\xlongequal{\text { Shift }} \quad n \mapsto n+1$ in $n+3$.

Solution. $\quad(n+1)+3=n+4$.

Example 12. $\underline{\underline{\text { Shift }}} n \mapsto n+1$ in $n+10$.

Solution. $\quad(n+1)+10=n+11$.

Example 13. $\xlongequal{\text { Shift }} n \mapsto n+1 \xlongequal{\frac{1}{2} n(n+1)}$

Solution. $\quad \frac{1}{2}(n+1)(n+2)$.

Example 14. $\xlongequal{\text { Shift }} n \mapsto n+1$ in $\frac{1}{6} n(n+1)(n+2)$

Solution. $\quad \frac{1}{6}(n+1)(n+2)(n+3)$.

Example 15. $\underline{\underline{\text { Shift }}} n \mapsto n+1$ in

$$
1+3+6+10+15+\cdots+\frac{1}{2} n(n+1)
$$

Solution.

$$
1+3+6+10+15+\cdots+\frac{1}{2}(n+1)(n+2) .
$$

