Math 105 TOPICS IN MATHEMATICS
 REVIEW OF LECTURES - XXXIV

April 22 (Wed), 2015
Instructor: Yasuyuki Kachi
Line \#: 52920.

§34. Mean values.

Question 1. What is the mean of

1 and 9 ?
The sum of these numbers is 10 . So, the answer is 10 divided by 2 , which is 5 . To summarize:

$$
\text { the mean of } 1 \text { and } 9=\frac{1+9}{2}=5 .
$$

* More generally:

$$
\text { The mean of } a \text { and } b \text { is } \frac{a+b}{2} \text {. }
$$

Question 2. What is the mean of

$$
7, \quad-1 \quad \text { and } \quad 12 ?
$$

The sum of these numbers is 18 . This time, there are three numbers involved. So, the answer is 18 divided by 3 , which is 6 . To summarize:

$$
\text { the mean of } 7,-1 \text { and } 12=\frac{7+(-1)+12}{3}=6 \text {. }
$$

* More generally:

The mean of a, b and c is $\frac{a+b+c}{3}$.

When four or more numbers are involved, it is the same. Namely, agree:
(1) the mean of a_{1} is $\frac{a_{1}}{1}$.
(2) the mean of a_{1} and a_{2} is $\frac{a_{1}+a_{2}}{2}$.
(3) the mean of a_{1}, a_{2} and a_{3} is $\frac{a_{1}+a_{2}+a_{3}}{3}$.
(4) the mean of a_{1}, a_{2}, a_{3} and a_{4} is $\frac{a_{1}+a_{2}+a_{3}+a_{4}}{4}$.
(5) the mean of $a_{1}, a_{2}, a_{3}, a_{4}$ and a_{5} is $\frac{a_{1}+a_{2}+a_{3}+a_{4}+a_{5}}{5}$.
(6) the mean of $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ and a_{6} is $\frac{a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}}{6}$.

Exercise 1. (1) Find the mean of 2.
(2) Find the mean of 3 and -7 .
(3) Find the mean of 3,5 and 17 .
(4) Find the mean of $4,6,8$ and 10 .
(5) Find the mean of $-1,2,-3,4$ and -5 .
(6) Find the mean of $96,48,24,12,6$ and 3.
[Answers $]$:
(1) 2 .
(2) -2 .
(3) $\frac{25}{3}$.
(4) 7 .
(5) $-\frac{3}{5}$.
(6) $\frac{63}{2}$.

- In the above, for no compelling reason, let's

$$
\begin{aligned}
& \text { rewrite } a_{1} \text { as } f(1) ; \\
& \text { rewrite } a_{2} \text { as } f(2) ; \\
& \text { rewrite } a_{3} \text { as } f(3) ; \\
& \text { rewrite } a_{4} \text { as } f(4) ; \\
& \text { rewrite } a_{5} \text { as } f(5) ; \\
& \text { rewrite } a_{6} \text { as } f(6) ;
\end{aligned}
$$

Thus
(1) the mean of $f(1)$ is $\frac{f(1)}{1}$.
(2) the mean of $f(1)$ and $f(2)$ is $\frac{f(1)+f(2)}{2}$.
(3) the mean of $f(1), f(2)$ and $f(3)$ is $\frac{f(1)+f(2)+f(3)}{3}$.
(4) the mean of $f(1), f(2), f(3)$ and $f(4)$ is $\frac{f(1)+f(2)+f(3)+f(4)}{4}$.
(5) the mean of $f(1), f(2), f(3), f(4)$ and $f(5)$ is $\frac{f(1)+f(2)+f(3)+f(4)+f(5)}{5}$.
(6) the mean of $f(1), f(2), f(3), f(4), f(5)$ and $f(6)$ is

$$
\frac{f(1)+f(2)+f(3)+f(4)+f(5)+f(6)}{6} .
$$

Example 1. Let $f(x)=x^{2}$. Then

$$
\begin{aligned}
& f(1)=1^{2} \\
& f(2)=2^{2} \\
& f(3)=3^{2} \\
& f(4)=4^{2} \\
& f(5)=5^{2} \\
& f(6)=6^{2}
\end{aligned}
$$

Accordingly
(1) the mean of $f(1)$ is $\frac{1^{2}}{1}$.
(2) the mean of $f(1)$ and $f(2)$ is $\frac{1^{2}+2^{2}}{2}$.
(3) the mean of $f(1), f(2)$ and $f(3)$ is $\frac{1^{2}+2^{2}+3^{2}}{3}$.
(4) the mean of $f(1), f(2), f(3)$ and $f(4)$ is $\frac{1^{2}+2^{2}+3^{2}+4^{2}}{4}$.
(5) the mean of $f(1), f(2), f(3), f(4)$ and $f(5)$ is $\frac{1^{2}+2^{2}+3^{2}+4^{2}+5^{2}}{5}$.
(6) the mean of $f(1), f(2), f(3), f(4), f(5)$ and $f(6)$ is $\frac{1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}}{6}$. !

- In a similar vein, suppose $f(x)$ is given. Somehow the following kind of means play important roles in the subsequent discussion:
- the mean of $f\left(\frac{x}{2}\right)$ and $f\left(\frac{2 x}{2}\right)$.

- the mean of $f\left(\frac{x}{3}\right), f\left(\frac{2 x}{3}\right)$ and $f\left(\frac{3 x}{3}\right)$.

- the mean of $f\left(\frac{x}{4}\right), f\left(\frac{2 x}{4}\right), f\left(\frac{3 x}{4}\right)$ and $f\left(\frac{4 x}{4}\right)$.

Example 2. Once again, let $f(x)=x^{2}$. Then

$$
\begin{aligned}
& f\left(\frac{x}{2}\right)=\left(\frac{x}{2}\right)^{2}, \quad f\left(\frac{2 x}{2}\right)=\left(\frac{2 x}{2}\right)^{2}, \\
& f\left(\frac{x}{3}\right)=\left(\frac{x}{3}\right)^{2}, \\
& f\left(\frac{2 x}{3}\right)=\left(\frac{2 x}{3}\right)^{2}, \quad f\left(\frac{3 x}{3}\right)=\left(\frac{3 x}{3}\right)^{2} \\
& f=\left(\frac{x}{4}\right)^{2}, \\
& \vdots f\left(\frac{2 x}{4}\right)=\left(\frac{2 x}{4}\right)^{2}, \quad f\left(\frac{3 x}{4}\right)=\left(\frac{3 x}{4}\right)^{2}, \quad f\left(\frac{4 x}{4}\right)=\left(\frac{4 x}{4}\right)^{2}, \\
& \vdots
\end{aligned}
$$

Accordingly

- the mean of $f\left(\frac{x}{2}\right)$ and $f\left(\frac{2 x}{2}\right)$ is $\frac{\left(\frac{x}{2}\right)^{2}+\left(\frac{2 x}{2}\right)^{2}}{2}$,
- the mean of $f\left(\frac{x}{3}\right), f\left(\frac{2 x}{3}\right)$ and $f\left(\frac{3 x}{3}\right)$ is $\frac{\left(\frac{x}{3}\right)^{2}+\left(\frac{2 x}{3}\right)^{2}+\left(\frac{3 x}{3}\right)^{2}}{3}$,
- the mean of $f\left(\frac{x}{4}\right), f\left(\frac{2 x}{4}\right), f\left(\frac{3 x}{4}\right)$ and $f\left(\frac{4 x}{4}\right)$ is

$$
\frac{\left(\frac{x}{4}\right)^{2}+\left(\frac{2 x}{4}\right)^{2}+\left(\frac{3 x}{4}\right)^{2}+\left(\frac{4 x}{4}\right)^{2}}{4}
$$

These are clearly rewritten as

$$
\begin{aligned}
& \left(1^{2}+2^{2}\right) \frac{x^{2}}{2^{3}} \\
& \left(1^{2}+2^{2}+3^{2}\right) \frac{x^{2}}{3^{3}}, \\
& \left(1^{2}+2^{2}+3^{2}+4^{2}\right) \frac{x^{2}}{4^{3}}, \\
& \quad \vdots
\end{aligned}
$$

As you extrapolate the patterns, you agree that the following is true:

- the mean of $f\left(\frac{x}{n}\right), f\left(\frac{2 x}{n}\right), f\left(\frac{3 x}{n}\right), \cdots f\left(\frac{n x}{n}\right)$ is

$$
(\underbrace{\left.1^{2}+2^{2}+3^{2}+\cdots+n^{2}\right) \frac{x^{2}}{n^{3}} . . ~ . ~}
$$

As for the underlined part, let's recall the formula:

Formula. (from "Review of Lectures - XXVII").

$$
1^{2}+2^{2}+3^{2}+4^{2}+\cdots+n^{2}=\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n
$$

So the above is paraphrased as follows:

- the mean of $f\left(\frac{x}{n}\right), f\left(\frac{2 x}{n}\right), f\left(\frac{3 x}{n}\right), \cdots, f\left(\frac{n x}{n}\right)$ is

$$
\left(\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n\right) \frac{x^{2}}{n^{3}},
$$

that is,

$$
\left(\frac{1}{3}+\frac{1}{2} \cdot \frac{1}{n}+\frac{1}{6} \cdot \frac{1}{n^{2}}\right) x^{2} .
$$

It is useful for later purpose to examine the state of this quantity when n grows arbitrarily large. When n grows, like

$$
\begin{aligned}
n & =1000 \\
n & =1000000 \\
n & =1000000000 \\
& \vdots
\end{aligned}
$$

then accordingly $\frac{1}{n}$ and $\frac{1}{n^{2}}$ become negligible:

$$
\begin{array}{lll}
n=1000 & \Longrightarrow \frac{1}{n}=0.001, & \frac{1}{n^{2}}=0.000001, \\
n=1000000 & \Longrightarrow \frac{1}{n}=0.000001, & \frac{1}{n^{2}}=0.000000000001, \\
n=1000000000 & \Longrightarrow \frac{1}{n}=0.000000001, & \frac{1}{n^{2}}=0.000000000000000001,
\end{array}
$$

More precisely,

$$
\lim _{n \rightarrow \infty} \frac{1}{n}=0, \quad \lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0
$$

Hence

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{3}+\frac{1}{2} \cdot \frac{1}{n}+\frac{1}{6} \cdot \frac{1}{n^{2}}\right) x^{2}=\frac{1}{3} x^{2}
$$

- Summary of Example 2.
$"$ For

$$
\begin{aligned}
& f(x)=x^{2} \\
& \xlongequal{\text { the mean of }} f\left(\frac{x}{n}\right), f\left(\frac{2 x}{n}\right), f\left(\frac{3 x}{n}\right), \cdots, f\left(\frac{n x}{n}\right), \quad \text { as } n \longrightarrow \infty \\
& \underline{\underline{\text { is }}}
\end{aligned}
$$

$$
\frac{1}{3} x^{2}
$$

Example 3. Let $f(x)=x^{3}$. Once again, let's consider

- the mean of $f\left(\frac{x}{2}\right)$ and $f\left(\frac{2 x}{2}\right)$,
- the mean of $f\left(\frac{x}{3}\right), f\left(\frac{2 x}{3}\right)$ and $f\left(\frac{3 x}{3}\right)$,
- the mean of $f\left(\frac{x}{4}\right), f\left(\frac{2 x}{4}\right), f\left(\frac{3 x}{4}\right)$ and $f\left(\frac{4 x}{4}\right)$, :
- the mean of $f\left(\frac{x}{n}\right), f\left(\frac{2 x}{n}\right), f\left(\frac{3 x}{n}\right) \cdots, f\left(\frac{n x}{n}\right)$.

The answers are as follows:

$$
\begin{aligned}
& \left(1^{3}+2^{3}\right) \frac{x^{3}}{2^{4}}, \\
& \left(1^{3}+2^{3}+3^{3}\right) \frac{x^{3}}{3^{4}}, \\
& \left(1^{3}+2^{3}+3^{3}+4^{3}\right) \frac{x^{3}}{4^{4}}, \\
& \vdots \\
& \left(1^{3}+2^{3}+3^{3}+\cdots+n^{3}\right) \frac{x^{3}}{n^{4}}
\end{aligned}
$$

Once again, as for the underlined part, recall the formula:

Formula. (from "Review of Lectures - XXVII").

$$
1^{3}+2^{3}+3^{3}+4^{3}+\cdots+n^{3}=\frac{1}{4} n^{4}+\frac{1}{2} n^{3}+\frac{1}{4} n^{2}
$$

We may accordingly rewrite the last one as

$$
\left(\frac{1}{4} n^{4}+\frac{1}{2} n^{3}+\frac{1}{4} n^{2}\right) \frac{x^{3}}{n^{4}}
$$

which equals

$$
\left(\frac{1}{4}+\frac{1}{2} \cdot \frac{1}{n}+\frac{1}{4} \cdot \frac{1}{n^{2}}\right) x^{3} .
$$

Now, limit-wise

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{4}+\frac{1}{2} \cdot \frac{1}{n}+\frac{1}{4} \cdot \frac{1}{n^{2}}\right) x^{3}=\frac{1}{4} x^{3}
$$

In sum:

- Summary of Example 3.

$$
\begin{aligned}
& \text { " For } \\
& f(x)=x^{3}, \\
& \underline{\underline{\text { the mean of }}} f\left(\frac{x}{n}\right), f\left(\frac{2 x}{n}\right), f\left(\frac{3 x}{n}\right), \cdots, f\left(\frac{n x}{n}\right), \quad \underline{\underline{\text { as }}} n \longrightarrow \infty, \\
& \underline{\underline{\text { is }}} \\
& \frac{1}{4} x^{3} .
\end{aligned}
$$

Now, nothing stops us from considering the same problem for

$$
\begin{aligned}
& f(x)=x^{4} \\
& f(x)=x^{5} \\
& f(x)=x^{6}
\end{aligned}
$$

By extrapolation, we conclude:

$$
\begin{aligned}
& \xlongequal{\text { the mean of }} f\left(\frac{x}{n}\right), f\left(\frac{2 x}{n}\right), f\left(\frac{3 x}{n}\right), \cdots, f\left(\frac{n x}{n}\right), \quad \underline{\underline{\text { as }}} n \longrightarrow \infty, \quad \underline{\underline{\text { is }}} \\
& \frac{1}{5} x^{4}, \quad \text { when } \quad f(x)=x^{4}, \\
& \frac{1}{6} x^{5}, \quad \text { when } \quad f(x)=x^{5}, \\
& \frac{1}{7} x^{6}, \quad \text { when } \quad f(x)=x^{6},
\end{aligned}
$$

- If you utilize the formula in "Review of Lectures - XXVII", page 1, then you will be able to pull more precise results (below). Before presenting them, we introduce the following notation, which is convenient.

Notation. For a given $f(x)$, the notation $M_{n}(f)(x)$ stands for the mean of

$$
f\left(\frac{x}{n}\right), f\left(\frac{2 x}{n}\right), f\left(\frac{3 x}{n}\right), \cdots, f\left(\frac{n x}{n}\right) .
$$

Also, the notation $M(f)(x)$ stands for the limit

$$
\lim _{n \rightarrow \infty} M_{n}(f)(x)
$$

Results.

(1) $f(x)=x \quad \Longrightarrow \quad M_{n}(f)(x)=\left(\frac{1}{2}+\frac{1}{2} \cdot \frac{1}{n}\right) x$,

$$
M(f)(x)=\frac{1}{2} x
$$

(2) $f(x)=x^{2} \Longrightarrow M_{n}(f)(x)=\left(\frac{1}{3}+\frac{1}{2} \cdot \frac{1}{n}+\frac{1}{6} \cdot \frac{1}{n^{2}}\right) x^{2}$,

$$
M(f)(x)=\frac{1}{3} x^{2}
$$

$$
\begin{align*}
& f(x)=x^{3} \Longrightarrow M_{n}(f)(x)=\left(\frac{1}{4}+\frac{1}{2} \cdot \frac{1}{n}+\frac{1}{4} \cdot \frac{1}{n^{2}}\right) x^{3} \tag{3}\\
& M(f)(x)=\frac{1}{4} x^{3}
\end{align*}
$$

(4) $f(x)=x^{4} \Longrightarrow M_{n}(f)(x)=\left(\frac{1}{5}+\frac{1}{2} \cdot \frac{1}{n}+\frac{1}{3} \cdot \frac{1}{n^{2}}-\frac{1}{30} \cdot \frac{1}{n^{4}}\right) x^{4}$,

$$
M(f)(x)=\frac{1}{5} x^{4}
$$

(5) $f(x)=x^{5} \Longrightarrow M_{n}(f)(x)=\left(\frac{1}{6}+\frac{1}{2} \cdot \frac{1}{n}+\frac{5}{12} \cdot \frac{1}{n^{2}}-\frac{1}{12} \cdot \frac{1}{n^{4}}\right) x^{5}$,

$$
M(f)(x)=\frac{1}{6} x^{5}
$$

Exercise 2. Find $M_{n}(f)(x)$ and $M(f)(x)$ for

$$
\begin{equation*}
f(x)=x^{6} \tag{6}
\end{equation*}
$$

Use the following, if necessary.

Formula.

$$
1^{6}+2^{6}+3^{6}+\cdots+n^{6}=\frac{1}{7} n^{7}+\frac{1}{2} n^{6}+\frac{1}{2} n^{5}-\frac{1}{6} n^{3}+\frac{1}{42} n
$$

$[$ Answer $]$:

$$
\begin{aligned}
& M_{n}(f)(x)=\left(\frac{1}{7}+\frac{1}{2} \cdot \frac{1}{n}+\frac{1}{2} \cdot \frac{1}{n^{2}}-\frac{1}{6} \cdot \frac{1}{n^{4}}+\frac{1}{42} \cdot \frac{1}{n^{6}}\right) x^{6} \\
& M(f)(x)=\frac{1}{7} x^{6} .
\end{aligned}
$$

