Math 105 TOPICS IN MATHEMATICS REVIEW OF LECTURES - XXXIII (SUPPLEMENT)

April 20 (Mon), 2015
Instructor: Yasuyuki Kachi
Line \#: 52920.
Appendix to §33. System of linear Equations.

Can you solve the following for x and y ?

$$
\begin{cases}3 x+2 y=4, & -(1) \\ 7 x+5 y=1 & \end{cases}
$$

$[$ Solution $]: \quad$ Do $-7 \cdot(1), \quad$ and $3 \cdot(2)$ each:

$$
\left\{\begin{aligned}
-21 x-14 y & =-28, & & -\quad 1^{\prime} \\
21 x+15 y & =3 & & -\quad(2)^{\prime}
\end{aligned}\right.
$$

Add (1) ${ }^{\prime}$ and (2) side by side:

$$
y=-25
$$

Substitute this outcome into (1):

$$
3 x+2 \cdot(-25)=4
$$

Solve it for x :

$$
\begin{aligned}
3 x & =4-2 \cdot(-25) \\
& =4+2 \cdot 25=54
\end{aligned}
$$

In short,

$$
3 x=54 .
$$

So

$$
x=18
$$

So the answer is

$$
x=18, \quad y=-25
$$

- The above example clearly falls into the pattern

$$
\left\{\begin{array}{l}
a x+b y=p \tag{1}\\
c x+d y=q
\end{array}\right.
$$

with

$$
\begin{array}{lll}
a=3, & b=2, & p=4, \\
c=7, & d=5, & \text { and }
\end{array} \quad q=1 .
$$

For these a, b, c and d we have

$$
a d-b c=1
$$

So, next let's solve

$$
\left\{\begin{array}{l}
a x+b y=p \tag{1}\\
c x+d y=q
\end{array}\right.
$$

under the assumption $\quad a d-b c=1$.
$[\underline{\text { Solution }}]: \quad$ Do $-c \cdot(1)$, and $a \cdot(2)$ each:

$$
\left\{\begin{aligned}
-a c x-b c y & =-c p, & & -\left(1^{\prime}\right. \\
a c x+a d y & =a q & & -(2)^{\prime}
\end{aligned}\right.
$$

Add (1) ${ }^{\prime}$ and (2) side by side:

$$
(a d-b c) y=-c p+a q
$$

Since by assumption $\quad a d-b c=1, \quad$ we obtain

$$
y=-c p+a q .
$$

Substitute this outcome into (1):

$$
a x+b(-c p+a q)=p
$$

Solve it for x :

$$
\begin{aligned}
a x & =p-b(-c p+a q) \\
& =p+b \cdot c p-b \cdot a q \\
& =(1+b \cdot c) p-a \cdot b q
\end{aligned}
$$

Here, the assumption $\quad a d-b c=1, \quad$ can be paraphrased as $1+b c=a d$, so the last quantity above further equals

$$
a d p-a b q
$$

In short,

$$
a x=a d p-a b q .
$$

So

$$
x=d p-b q .
$$

So the answer is

$$
x=d p-b q, \quad y=-c p+a q
$$

Summary. The system of equations

$$
\left\{\begin{array}{l}
a x+b y=p \tag{①}\\
c x+d y=q
\end{array}\right.
$$

$\xlongequal{\text { under the assumption }}$| $a d-b c=1$ |
| :---: |$\xlongequal{\text { is solved as }}$

$$
x=d p-b q, \quad y=-c p+a q
$$

Exercise 1. Solve
(1) $\quad\left\{\begin{array}{l}2 x+3 y=-1, \\ 3 x+5 y=3 .\end{array}\right.$
(2) $\left\{\begin{aligned} 11 x-14 y & =6, \\ 4 x-5 y & =2 .\end{aligned}\right.$
$[$ Answers $]$:
(1) $\quad x=-14, \quad y=9$.
(2) $\quad x=-2, \quad y=-2$.

