Math 105 TOPICS IN MATHEMATICS

 REVIEW OF LECTURES - XXXIII

 REVIEW OF LECTURES - XXXIII}

April 20 (Mon), 2015

Instructor: Yasuyuki Kachi

Line \#: 52920.
§33. Trigonometry - III.

In the previous lecture we calculated the distance between

$$
P=\left(\cos \frac{\pi}{4}, \sin \frac{\pi}{4}\right), \quad Q=\left(\cos \frac{\pi}{6}, \sin \frac{\pi}{6}\right) .
$$

Now, we can more generally consider the following question:

Question 1. Find the distance between

$$
P=(\cos \theta, \sin \theta), \quad Q=(\cos \phi, \sin \phi)
$$

where θ and ϕ are arbitrary.

[Solution $]$:

$$
|P Q|
$$

$$
=\sqrt{((\cos \theta)-(\cos \phi))^{2}+((\sin \theta)-(\sin \phi))^{2}}
$$

$$
=\sqrt{(\cos \theta)^{2}-2(\cos \theta)(\cos \phi)+(\cos \phi)^{2}+(\sin \theta)^{2}-2(\sin \theta)(\sin \phi)+(\sin \phi)^{2}}
$$

$$
=\sqrt{1+1-2(\cos \theta)(\cos \phi)-2(\sin \theta)(\sin \phi)}
$$

$$
=\sqrt{2-2(\cos \theta)(\cos \phi)-2(\sin \theta)(\sin \phi)} .
$$

Now, exactly as we previously did in the case $\theta=\frac{\pi}{4}$ and $\phi=\frac{\pi}{6}$, we pose:
Question 2. Find the distance between

$$
R=(\cos (\theta-\phi), \sin (\theta-\phi)), \quad S=(1,0)
$$

Explain why $|P Q|$ and $|R S|$ are equal. Then use that fact and the result of Question 1 above to write up $\cos (\theta-\phi)$ in terms of $\cos \theta, \sin \theta, \cos \phi$ and $\sin \phi$.

$[$ Solution $]$:

P and Q are both lying in the unit circle such that the angle $\angle P O Q$ equals $\theta-\phi . \quad R$ and S are also both lying in the unit circle such that the angle $\angle R O S$ equals $\theta-\phi$. Hence $|P Q|$ and $|R S|$ are naturally equal. Now,

$$
\begin{aligned}
|R S| & =\sqrt{((\cos (\theta-\phi))-1)^{2}+(\sin (\theta-\phi))^{2}} \\
& =\sqrt{(\cos (\theta-\phi))^{2}-2(\cos (\theta-\phi))+1+(\sin (\theta-\phi))^{2}} \\
& =\sqrt{1-2(\cos (\theta-\phi))+1} \\
& =\sqrt{2-2(\cos (\theta-\phi))}
\end{aligned}
$$

This equals

$$
|P Q|=\sqrt{2-2(\cos \theta)(\cos \phi)-2(\sin \theta)(\sin \phi)}
$$

So

$$
2-2(\cos (\theta-\phi))=2-2(\cos \theta)(\cos \phi)-2(\sin \theta)(\sin \phi)
$$

Solve this for $\cos (\theta-\phi)$:

$$
\cos (\theta-\phi)=(\cos \theta)(\cos \phi)+(\sin \theta)(\sin \phi)
$$

* Let's highlight this result:

Axiom 1. $\cos (\theta-\phi)=(\cos \theta)(\cos \phi)+(\sin \theta)(\sin \phi)$.

- Now, we shoot for pulling an analogous identity for $\sin (\theta-\phi)$. Toward that goal, working on the following two questions (Question 1^{\prime}, Question 2') is the correct step to take:

Question $\mathbf{1}^{\prime} . \quad$ Find the distance between

$$
P^{\prime}=(\sin \theta, \cos \theta), \quad \quad Q^{\prime}=(\cos \phi,-\sin \phi)
$$

where θ and ϕ are arbitrary.

The answer is,

$$
\left|P^{\prime} Q^{\prime}\right|=\sqrt{2-2(\sin \theta)(\cos \phi)+2(\cos \theta)(\sin \phi)} .
$$

The calculation is similar to Question 1.

Question 2'. Find the distance between

$$
R^{\prime}=(\sin (\theta-\phi), \cos (\theta-\phi)), \quad S=(1,0)
$$

Explain why $\left|P^{\prime} Q^{\prime}\right|$ and $\left|R^{\prime} S\right|$ are equal. Then use that fact and the result of Question 1 above to write up $\sin (\theta-\phi)$ in terms of $\cos \theta, \sin \theta, \cos \phi$ and $\sin \phi$.
$[\underline{\text { Solution }}]: \quad$ You can solve this exactly the same way as Question 2:
P^{\prime} and Q^{\prime} are both lying in the unit circle such that the angle $\angle P^{\prime} O Q^{\prime}$ equals $\frac{\pi}{2}-\theta+\phi . \quad R$ and S are also both lying in the unit circle such that the angle $\angle R^{\prime} O S$ equals $\frac{\pi}{2}-\theta+\phi$. Hence $\left|P^{\prime} Q^{\prime}\right|$ and $\left|R^{\prime} S\right|$ are naturally equal. Now,

$$
\left|R^{\prime} S\right|=\sqrt{2-2(\sin (\theta-\phi))}
$$

The calculation is similar to the calculation of $|R S|$. This equals

$$
\left|P^{\prime} Q^{\prime}\right|=\sqrt{2-2(\sin \theta)(\cos \phi)+2(\cos \theta)(\sin \phi)}
$$

So

$$
2-2(\sin (\theta-\phi))=2-2(\sin \theta)(\cos \phi)+2(\cos \theta)(\sin \phi)
$$

Solve this for $\sin (\theta-\phi)$:

$$
\sin (\theta-\phi)=(\sin \theta)(\cos \phi)-(\cos \theta)(\sin \phi)
$$

* Let's pair 'Axiom 1' which we deduced earlier with the above new result, and highlight them together:

Axiom 1.

$$
\begin{array}{l|l|}
\text { Axiom 1. } & \cos (\theta-\phi)=(\cos \theta)(\cos \phi)+(\sin \theta)(\sin \phi) \\
\cline { 2 - 2 } 2 . & \sin (\theta-\phi)=(\sin \theta)(\cos \phi)-(\cos \theta)(\sin \phi) \\
\hline
\end{array}
$$

- How about analogs for $\cos (\theta+\phi)$ and for $\sin (\theta+\phi)$?

For that matter, we rely on Axiom 1 and Axiom 2, and proceed as follows: First, set $\theta-\phi=\alpha$. Thus $\theta=\alpha+\phi$. Then the above two identities are

$$
\begin{aligned}
(\cos \phi)(\cos (\alpha+\phi))+(\sin \phi)(\sin (\alpha+\phi)) & =\cos \alpha \\
-(\sin \phi)(\cos (\alpha+\phi))+(\cos \phi)(\sin (\alpha+\phi)) & =\sin \alpha
\end{aligned}
$$

These two equations are regarded as

$$
\left\{\begin{array}{l}
a x+b y=p \\
c x+d y=q
\end{array}\right.
$$

where

$$
\begin{array}{lcc}
a=\cos \phi, & b=\sin \phi, & p=\cos \alpha \\
c=-\sin \phi, & d=\cos \phi, & q=\sin \alpha \\
x=\cos (\theta+\phi), & \text { and } & y=\sin (\theta+\phi) .
\end{array}
$$

Clearly $\quad a d-b c=1$. Thus we rely on the result in "Supplement":

$$
x=d p-b q, \quad y=-c p+a q
$$

That is:

$$
\begin{aligned}
& \cos (\alpha+\phi)=(\cos \phi)(\cos \alpha)-(\sin \phi)(\sin \alpha) \\
& \sin (\alpha+\phi)=(\sin \phi)(\cos \alpha)+(\cos \phi)(\sin \alpha)
\end{aligned}
$$

At this point, we are free to replace the letter α with θ. Let's go ahead and make that replacement, and highlight:

Axiom 3.

$$
\begin{aligned}
\cos (\theta+\phi) & =(\cos \theta)(\cos \phi)-(\sin \theta)(\sin \phi) \\
\sin (\theta+\phi) & =(\sin \theta)(\cos \phi)+(\cos \theta)(\sin \phi)
\end{aligned}
$$

* In Axiom 1 and Axiom 2, set $\phi=\theta$ and we get

Double angle formula for cos.

$$
\cos (2 \theta)=(\cos \theta)^{2}-(\sin \theta)^{2}
$$

Double angle formula for \cos - version 2.

$$
\cos (2 \theta)=2(\cos \theta)^{2}-1
$$

Double angle formula for \cos - version 3.

$$
\cos (2 \theta)=1-2(\sin \theta)^{2}
$$

Double angle formula for sin.

$$
\sin (2 \theta)=2(\cos \theta)(\sin \theta)
$$

* From Axiom 1 and Axiom 3, we have

Formula A.	$2(\cos \theta)(\cos \phi)=\cos (\theta-\phi)+\cos (\theta+\phi)$
	$2(\sin \theta)(\sin \phi)=\cos (\theta-\phi)-\cos (\theta+\phi)$

* Similarly, from Axiom 2 and Axiom 4, we have

Formula C. $\quad 2(\sin \theta)(\cos \phi)=\sin (\theta-\phi)+\sin (\theta+\phi)$.

- Today's final topic is

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}
$$

This is somehow very important. Don't ask me yet how so. As for this, consider

$$
\begin{array}{ll}
P=(\cos \theta, \sin \theta), & P_{0}=(1,0) \\
T & =\left(1, \frac{\sin \theta}{\cos \theta}\right)
\end{array}
$$

Assume $\theta>0 . T$ is the unique point lying in the extension of the segment $O P$ whose x-coordinate reading is 1 . By drawing the figure, we have

$$
\begin{gathered}
\left(\text { the area of } \triangle P O P_{0}\right)<\left(\text { the area of circle sector } P O P_{0}\right) \\
<\left(\text { the area of } \triangle T O P_{0}\right) .
\end{gathered}
$$

This translates into

$$
\frac{\sin \theta}{2} \underset{(*)}{<} \frac{\theta}{2} \underset{(\#)}{<} \frac{\sin \theta}{2 \cos \theta}
$$

Here, we use the fact that the area of the entire disc of radius 1 equals π (the middle term is $\frac{\theta}{2 \pi}$ times the area of the entire unit disc). From $(*)$ we have

$$
\frac{\sin \theta}{\theta}<1
$$

whereas from (\#) we have

$$
\cos \theta<\frac{\sin \theta}{\theta}
$$

In short,

$$
\cos \theta<\frac{\sin \theta}{\theta}<1
$$

From this it is inferred that

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1
$$

Indeed,

$$
\lim _{\theta \rightarrow 0} \cos \theta=\cos 0=1
$$

- To highlight:

Formula D.

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1
$$

* Technically, this last implication is due to the so-called "squeeze theorem". The squeeze theorem asserts that, if

$$
f(x)<g(x)<h(x)
$$

for $a<x<b$ (where a is some negative number, a is some positive number), and moreover if

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} h(x),
$$

then these limits further equal $\lim _{x \rightarrow 0} g(x)$.

