Math 105 TOPICS IN MATHEMATICS
 REVIEW OF LECTURES - XXXII

April 17 (Fri), 2015

Instructor: Yasuyuki Kachi

Line \#: 52920.

§32. Distance.

Today we talk about the distance - the distance between two points lying in the $x y$-coordiate system, to be precise.

Definition. Let P and Q be two points, both lying in the $x y$-coordiate system. Suppose the coordinate reading of P and Q are given by

$$
P=(a, b), \quad \text { and } \quad Q=(c, d)
$$

respectively. Then the distance $|P Q|$ between P and Q is

$$
\sqrt{(c-a)^{2}+(d-b)^{2}}
$$

\star The following is a speial case:

Let P be a point, lying in the $x y$-coordiate system. Suppose the coordinate reading of P is given by

$$
P=(a, b)
$$

Meanwhile, let O be the coordinate origin:

$$
O=(0,0)
$$

Then the distance $|P O|$ between P and O is

$$
\sqrt{a^{2}+b^{2}}
$$

Example 1. Let's find the distance between

$$
P=(3,5), \quad Q=(4,7)
$$

By definition,

$$
\begin{aligned}
|P Q| & =\sqrt{(4-3)^{2}+(7-5)^{2}} \\
& =\sqrt{1^{2}+2^{2}} \\
& =\sqrt{5}
\end{aligned}
$$

Example 2. Let's find the distance between

$$
P=(1,-3), \quad Q=(-2,4)
$$

By definition,

$$
\begin{aligned}
|P Q| & =\sqrt{(-2-1)^{2}+(4-(-3))^{2}} \\
& =\sqrt{(-3)^{2}+7^{2}} \\
& =\sqrt{9+49} \\
& =\sqrt{58}
\end{aligned}
$$

Example 3. Let's find the distance between

$$
P=(-5,0), \quad Q=(6,0)
$$

By definition,

$$
\begin{aligned}
|P Q| & =\sqrt{(6-(-5))^{2}+(0-0)^{2}} \\
& =\sqrt{11^{2}+0^{2}} \\
& =\sqrt{11^{2}} \\
& =11
\end{aligned}
$$

Example 4. Let's find the distance between

$$
P=(12,1), \quad O=(0,0)
$$

By definition,

$$
\begin{aligned}
|P O| & =\sqrt{12^{2}+1^{2}} \\
& =\sqrt{144+1} \\
& =\sqrt{145}
\end{aligned}
$$

Exercise 1. \quad Find the distance between P and Q.

$$
\begin{equation*}
P=(2,0), \quad Q=(3,1) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
P=(-4,3), \quad Q=(-1,7) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
P=(100,0), \quad Q=(100,1) \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
P=(-3,4), \quad Q=(2,16) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
P=(4,1), \quad O=(0,0) \tag{5}
\end{equation*}
$$

$O=(0,0), \quad Q=(8,15)$.
[Answers $]$:
(1) $\sqrt{2}$.
(2) 5 .
(3) 13 .
(4) 1 .
(5) $\sqrt{17}$.
(6) 17 .

- Most basic property of \sin and cos.

No matter what you do, please remember the following, which is extremely important:

$$
(\cos \theta)^{2}+(\sin \theta)^{2}=1
$$

This is true no matter what θ is.

Example 5. $\quad\left(\cos \frac{\pi}{9}\right)^{2}+\left(\sin \frac{\pi}{9}\right)^{2}=1$.

Example 6. $\quad\left(\cos \frac{\pi}{5}\right)^{2}+\left(\sin \frac{\pi}{5}\right)^{2}=1$.

Example 7. $\quad\left(\cos \frac{3 \pi}{7}\right)^{2}+\left(\sin \frac{3 \pi}{7}\right)^{2}=1$.

Example 8. $\quad\left(\cos \frac{\pi}{\sqrt{2}}\right)^{2}+\left(\sin \frac{\pi}{\sqrt{2}}\right)^{2}=1$.

Example 9. $\quad\left(\cos \left(-\frac{\pi}{15}\right)\right)^{2}+\left(\sin \left(-\frac{\pi}{15}\right)\right)^{2}=1$.

* Can you paraphrase the above identity in terms of the distance? I bet you can.
" The distance between

$$
P=(\cos \theta, \sin \theta)
$$

$\underline{\underline{\text { and the coordinate origin }}} O=\left(\begin{array}{ll}0, & 0\end{array}\right) \xlongequal{\text { is always 1. }}$ "
\star Here is a further paraphrase:
" The point

$$
P=(\cos \theta, \sin \theta)
$$

always lies in the unit circle, the circle with radius 1 centered at the origin."

Here is one important exercise:

Exercise 2. Find the distance between

$$
P=\left(\cos \frac{\pi}{4}, \sin \frac{\pi}{4}\right), \quad Q=\left(\cos \frac{\pi}{6}, \sin \frac{\pi}{6}\right)
$$

$[$ Solution $]: \quad$ First, recall

$$
\begin{array}{ll}
\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}, & \sin \frac{\pi}{4}=\frac{\sqrt{2}}{2} \\
\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}, & \sin \frac{\pi}{6}=\frac{1}{2}
\end{array}
$$

Thus, by definition,

$$
\begin{aligned}
|P Q| & =\sqrt{\left(\left(\cos \frac{\pi}{4}\right)-\left(\cos \frac{\pi}{6}\right)\right)^{2}+\left(\left(\sin \frac{\pi}{4}\right)-\left(\sin \frac{\pi}{6}\right)\right)^{2}} \\
& =\sqrt{\left(\frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2}\right)^{2}+\left(\frac{1}{2}-\frac{\sqrt{2}}{2}\right)^{2}} \\
& =\sqrt{\left(\frac{\sqrt{3}-\sqrt{2}}{2}\right)^{2}+\left(\frac{1-\sqrt{2}}{2}\right)^{2}} \\
& =\sqrt{\frac{3+2-2 \sqrt{3} \cdot \sqrt{2}}{4}+\frac{1+2-2 \cdot 1 \cdot \sqrt{2}}{4}} \\
& =\sqrt{\frac{5-2 \sqrt{6}}{4}+\frac{3-2 \sqrt{2}}{4}} \\
& =\sqrt{\frac{5-2 \sqrt{6}+3-2 \sqrt{2}}{4}} \\
& \left.=\sqrt{\frac{8-2 \sqrt{6}-2 \sqrt{2}}{4}}=\frac{1}{2} \sqrt{8-2 \sqrt{6}-2 \sqrt{2}}\right)
\end{aligned}
$$

Exercise 3. Let P and Q be as in Exercise 2. Let

$$
R=\left(\cos \frac{\pi}{12}, \sin \frac{\pi}{12}\right), \quad S=(1,0)
$$

Explain why $|P Q|$ and $|R S|$ are equal. Then use that fact and the result of Exercise 2 to evaluate $\cos \frac{\pi}{12}$.

[Solution $]$:

P and Q are both lying in the unit circle such that the angle $\angle P O Q$ equals $\frac{\pi}{4}-\frac{\pi}{6}=\frac{\pi}{12} . \quad R$ and S are also both lying in the unit circle such that the angle $\angle R O S$ equals $\frac{\pi}{12}-0=\frac{\pi}{12}$. Hence $|P Q|$ and $|R S|$ are naturally equal. Now,

$$
\begin{aligned}
|R S| & =\sqrt{\left(\left(\cos \frac{\pi}{12}\right)-1\right)^{2}+\left(\sin \frac{\pi}{12}\right)^{2}} \\
& =\sqrt{\left(\cos \frac{\pi}{12}\right)^{2}-2\left(\cos \frac{\pi}{12}\right)+1+\left(\sin \frac{\pi}{12}\right)^{2}} \\
& =\sqrt{1-2\left(\cos \frac{\pi}{12}\right)+1} \\
& =\sqrt{2-2\left(\cos \frac{\pi}{12}\right)} .
\end{aligned}
$$

This equals

$$
|R S|=\sqrt{\frac{8-2 \sqrt{6}-2 \sqrt{2}}{4}}
$$

So

$$
2-2\left(\cos \frac{\pi}{12}\right)=\frac{8-2 \sqrt{6}-2 \sqrt{2}}{4}
$$

Solve this for $\cos \frac{\pi}{12}$:

$$
\begin{aligned}
2 \cos \frac{\pi}{12} & =\frac{2 \sqrt{6}+2 \sqrt{2}}{4} \\
\Longrightarrow \quad \cos \frac{\pi}{12} & =\frac{\sqrt{6}+\sqrt{2}}{4}
\end{aligned}
$$

