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Line #: 52920.

§18. Exponential functions.

• Today we talk about

2x, 3x, 4x, ···

as functions on x. The theoretical stumbling block was how you raise the power of

an irrational number. Last time we have managed to define 2
√

2 . The general case
of

ax
(

a : a positive real number; x : a real number
)

can be easily extrapolated. Namely, we make the following definition:

Definition. Assume that a is a positive real number, x is a real number, and ℓ

is an integer, ℓ > 1. For each index n, let cn
(

ℓ
)

be the truncation at the n-th
digit under the “ℓ-ary” point of x. Define

ax = lim
n−→∞

acn(ℓ)

.

This limit exists, and it does not depend on the choice of ℓ.

• Coincidence of two definitions when xxx is rational.

Realize that, when x is a rational number, then you have two definitions for ax:

One is the original definition, that is, write x as
n

k
and ax is the k-th root of an.

Another is the limit of acn(ℓ) as above, where acn(ℓ) resorts to the original definition
(

which makes sense because cn(ℓ) is a rational number.
)

For example, consider
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x =
1

3
.

Then, in one definition ax is the cube-root of x. On the other hand, in the usual
decimals x is

x = 0.33333333333333333... ,

So cn
(

10
)

is like

c1
(

10
)

= 0.3 ,

c2
(

10
)

= 0.33 ,

c3
(

10
)

= 0.333 ,

c4
(

10
)

= 0.3333 ,

c5
(

10
)

= 0.33333 ,

c6
(

10
)

= 0.333333 ,

c7
(

10
)

= 0.3333333 ,

c8
(

10
)

= 0.33333333 ,

···

None of these equals x. So it remains to be seen if the limit

lim
n−→∞

acn(ℓ)

indeed matches a

1

3 in the usual sense of the cube-root.

Now, the answer is ‘yes indeed’. The easiest way to see this is as follows: x is
re-expressed as

x = 0.1

in the base ℓ = 3 system
(

or, the ternary system
)

. Then, for ℓ = 3, all cn
(

3
)

are

actually equal to x. Then clearly acn(3) are all equal to ax where x is the rational

number
1

3
. So the limit
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lim
n−→∞

acn(3)

is trivially equal to the cube-root of a. Now, we have already proved in our last
lecture that changing ℓ does not affect the limit

lim
n−→∞

acn(ℓ).

So no matter which ℓ you choose, you have the same answer, namely, the limit

lim
n−→∞

acn(ℓ)

always equals the cube-root of a.

As for the general case, you resort to the following fact:

Proposition. Let x be an arbitrary rational number. Then there exists ℓ such
that the ℓ-ary expression of x has only finitely many digits.

This proposition is not difficult to prove — almost trivial to mathematicians. If
this is trivial to you, then you think like a mathematician. If this is not trivial to
you, spend some time to think about it.

• Monotonicity.

So far throughout I have relied on the following:

Proposition. Let a be a real number. Assume a > 1. Let r and s be
rational numbers. Suppose r < s. Then ar < as.

⋆ Now that we have defined ax when x is a real number, so it makes sense to
ask if the same statement as Proposition above remains true even if we relaxed the
assumption r and s are rational numbers. The answer is actually affirmative. Below
let’s change the letter from r and s to x and y.

Proposition refined. Let a be a real number. Assume a > 1. Let x and y

be real numbers. Suppose x < y. Then ax < ay.
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• Continuity of axaxax as a function on xxx.

Next, continuity. Let me duplicate the theorem which we have covered in “Review
of Lectures – XV”

(

Theorem 1 on page 19
)

:

Theorem. Let r be a positive rational number, and fixed. Let a be a positive
real number

(

not necessarily a rational number
)

, and fixed. Then the following
conclusion holds:

No matter how large an integer N
(

> 0
)

you choose, you can find a rational
number s (i) above r and (ii) below r each, such that the distance between ar and

as is less than
1

N
.

⋆ Once again, at that time, we have not had the definition of ax when x is
irrational. It makes sense to ask if the same statement as Theorem above remains
true even if we relaxed the assumption r is a rational number. The answer is, once
again, affirmative. Below let’s change the letter from r and s to x and y.

Theorem refined. Let x be a positive real number, and fixed. Let a be a
positive real number, and fixed. Then the following conclusion holds:

No matter how large an integer N
(

> 0
)

you choose, you can find a real number
y (i) above x and (ii) below x each, such that the distance between ax and ay is

less than
1

N
.

• If you are super-meticulous, you would raise the question, that, while you can see
that (ii) is always true, it remains to be seen whether (i) is true, when x is irrational.
You don’t see if it can be proved strictly within what’s covered in “Review of Lec-

tures – XVII”. Indeed, the definition of ax uses
{

cn
(

ℓ
)

}

n
which is a monotonially

increasing sequence converging to x. You need to prove the fact that, if you have
two sequences, one monotonially increasing , and one monotonially decreasing ,

both coverging to x, call them
{

cn

}

n
, and

{

dn

}

n
, respectively, then the limit of

acn and the limit of adn coincide. Proof of (ii) would hinge on that. If you say so,
you are absolutely correct. I can prove all these, but that is rather techinical, so I
will just omit it.

4



• In the same spirit, it makes sense to ask if the exponential laws
(

from “Review of

Lectures – XVI”, page 11
)

remain valid even if we relax the assumption the exponents
are rational. The answer to this question too is affirmative. Let me highlight:

Exponential Laws (refined). Let x and y be real numbers. Let a and b

be positive real numbers Then

Rule I.
(

ab
)x

= ax bx
.

Rule II. ax ay = ax+y
.

Rule III.
(

ax
)y

= axy .

Rule IV. a0 = 1 1x = 1, .

Rule V. a−x =
1

ax .

Exercise 1.

(1) Simplify 2x · 5x. Write your answer as in
x

.

(2) Simplify a3 · a8.

(3) Simplify
(

a
√

2
)

√
2

.

(4) Simplify 1
√

3 .

(5) Rewrite a−
√

5 in the form
1

.

[

Answers
]

: (1) 10x. (2) a11. (3) a2. (4) 1. (5)
1

a
√

5
.
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• exexex.

Now, among all exponential functions ax, the one with a = e has a very very
special place. Often when we say “the exponential function”, it refers to ex. Here is
the reason why:

Theorem. Let x be an arbitrary real number. Then

ex = lim
n−→∞

(

1+
x

n

)n

= lim
k−→∞

(

1+
1

1!
x +

1

2!
x2 +

1

3!
x3 +

1

4!
x4 + ··· + 1

k !
xk

)

.

• Notational remark. We often write

lim
k−→∞

(

1+
1

1!
x +

1

2!
x2 +

1

3!
x3 +

1

4!
x4 + ··· + 1

k !
xk

)

as

1+
1

1!
x +

1

2!
x2 +

1

3!
x3 +

1

4!
x4 +

1

5!
x5 + ··· .

If you incorporate this notation, then the above theorem is paraphrased as follows:

Theorem paraphrased. Let x be an arbitrary real number. Then

ex = lim
n−→∞

(

1+
x

n

)n

= 1+
1

1!
x +

1

2!
x2 +

1

3!
x3 +

1

4!
x4 +

1

5!
x5 + ···
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Example 1.
√

e = 1 +
1

1!
· 1

2
+

1

2!
·
( 1

2

)2

+
1

3!
·
( 1

2

)3

+
1

4!
·
( 1

2

)4

+
1

5!
·
( 1

2

)5

+
1

6!
·
( 1

2

)6

+ · · · .

• Can you use your calculator , to calculate the right-hand side
(

say, the first ten

terms
)

and then independently of that, do
√

e , and see if the two results match?

• Exponential Laws pertaining to exexex.

Rule II. ex ey = ex+y
.

Rule III.
(

ex
)y

= exy .

Rule IV. e0 = 1 .

Rule V. e−x =
1

ex .

• Now, in the next lecture we introduce ‘logarithm’. Logarithm and exponential
functions are inseparably linked. You cannot talk about one without referring to the
other. Stated in other words, the exponential functions

(

including ex
)

can be best
understood within the framework of ‘logarithm’. So let’s look forward to the next
lecture.
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Exercise 2. Find the limits:

(1) lim
n−→∞

(

1+
3

n

)n

= ? (2) lim
n−→∞

(

1− 1

n

)n

= ?

(3) lim
n−→∞

(

1−
√

2

n

)n

= ?

[

Answers
]

: (1) e3. (3) e−1. (2) e−
√

2 .

Exercise 3. Write up each of (1) e2, (1) 3
√

e , and (3) e−1 as

an infinite sum in the same fashion as Example 1.

[

Answers
]

:

(1) e2 = 1 +
1

1!
· 2 +

1

2!
· 22 +

1

3!
· 23 +

1

4!
· 24 + ··· .

(2) 3
√

e = 1 +
1

1!
· 1

3
+

1

2!
·
( 1

3

)2

+
1

3!
·
( 1

3

)3

+
1

4!
·
( 1

3

)4

+
1

5!
·
( 1

3

)5

+ ··· .

(3) e−1 = 1 +
1

1!
·
(

−1
)

+
1

2!
·
(

−1
)2

+
1

3!
·
(

−1
)3

+
1

4!
·
(

−1
)4

+ ···

(

= 1 − 1

1!
+

1

2!
− 1

3!
+

1

4!
− ···

)

.
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