
Math 105 TOPICS IN MATHEMATICS

REVIEW OF LECTURES – XII

February 16 (Mon), 2015

Instructor: Yasuyuki Kachi

Line #: 52920.

§12. Factorials. Definition of e.

• Do you remember we briefly touched
(

in “Reivew of Lectures – VIII”
)

the
following:

1 = 1,

2 = 1 · 2,

6 = 1 · 2 · 3,

24 = 1 · 2 · 3 · 4,

120 = 1 · 2 · 3 · 4 · 5,

720 = 1 · 2 · 3 · 4 · 5 · 6,

5040 = 1 · 2 · 3 · 4 · 5 · 6 · 7,

40320 = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8,

362880 = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9,

3628800 = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10,

· ·· ·· ·

This is not just another sequence of numbers. This particular sequence is extremely
fundamental in mathematics, as in it shows up everywhere, it is impossible to avoid
it. If you like, we can certainly write these in the reverse multiplication fashion:
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1 = 1,

2 = 2 · 1,

6 = 3 · 2 · 1,

24 = 4 · 3 · 2 · 1,

120 = 5 · 4 · 3 · 2 · 1,

720 = 6 · 5 · 4 · 3 · 2 · 1,

5040 = 7 · 6 · 5 · 4 · 3 · 2 · 1,

40320 = 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1,

362880 = 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1,

3628800 =10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1,

· ·· ·· ·

These numbers appear so frequently in mathematics that they have a name:

“ ”factorial numbers.

What’s more, there is a convenient way to write these numbers in a short form,
using the symbol

“ ”! : the factorial symbol.

This is the same as the exclamation symbol. But in math, we never call it the
exclamation symbol. Also, please do not inadvertently place the exclamation symbol
after a number for emphasis, because it will be confused with the factorial. Now, we
denote the above ten numbers as

1!, 2!, 3!, 4!, 5!, 6!, 7!, 8!, 9! and 10!,

respectively. So
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1! = 1,

2! = 2 · 1,

3! = 3 · 2 · 1,

4! = 4 · 3 · 2 · 1,

5! = 5 · 4 · 3 · 2 · 1,

6! = 6 · 5 · 4 · 3 · 2 · 1,

7! = 7 · 6 · 5 · 4 · 3 · 2 · 1,

8! = 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1,

9! = 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1,

10! =10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1,

· ·· ·· ·

Pronunciation:

1 ! = “one factorial”,

2 ! = “two factorial”,

3 ! = “three factorial”,

4 ! = “four factorial”,

5 ! = “five factorial”,

6 ! = “six factorial”,

7 ! = “seven factorial”,

8 ! = “eight factorial”,

9 ! = “nine factorial”.

10 ! = “ten factorial”.
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So, can you tell me how to pronounce 20 ! ? Yes, “twenty factorial”. Can you
spell that out, as in can you describe that number without ‘!’ ? Yes,

20 ! = 20 · 19 · 18 · 17 · 16 · 15 · 14 · 13 · 12 · 11

· 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 .

Do you want to know how much this is? This is

20 ! = 20 · 19 · 18 · 17 · 16 · 15 · 14 · 13 · 12 · 11

· 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1

= 2432902008176640000.

This one I did by hand.

So, as you can imagine, the sequence of factorial numbers grow very rapidly. To
use a real life example:

Metaphor. You started a lemonade business. Words spread fast and the sales
dramatically increased

(

Table 1 below
)

:

day

∣

∣

∣

∣

$

1

∣

∣

∣

∣

∣

∣

∣

∣

1

2

∣

∣

∣

∣

∣

∣

∣

∣

2

3

∣

∣

∣

∣

∣

∣

∣

∣

6

4

∣

∣

∣

∣

∣

∣

∣

∣

24

5

∣

∣

∣

∣

∣

∣

∣

∣

120

6

∣

∣

∣

∣

∣

∣

∣

∣

720

...
...

On Day n, your sales will be n times the previous day sales. Suppose the same
patterns hold until Day 50. Then the sales on Day 50 is how much?
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Yes, the dollar amount of the sales on Day n is n !
(

“n factorial”
)

. So the dollar

amount of the sales on Day 50 is exactly 50!
(

“fifty factorial”
)

:

50 ! = 50 · 49 · 48 · 47 · 46 · 45 · 44 · 43 · 42 · 41

· 40 · 39 · 38 · 37 · 36 · 35 · 34 · 33 · 32 · 31

· 30 · 29 · 28 · 27 · 26 · 25 · 24 · 23 · 22 · 21

· 20 · 19 · 18 · 17 · 16 · 15 · 14 · 13 · 12 · 11

· 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 .

Hey, but if you are the owner of this business, you want to know the ball-park
figure of how much this is, for asset estimating and portfolio management, possibly
for your future stock investment. For that, we can certainly rely on our computer.
Here is what my computer software

(

Maple
)

spit out:

50 ! = 50 · 49 · 48 · 47 · 46 · 45 · 44 · 43 · 42 · 41

· 40 · 39 · 38 · 37 · 36 · 35 · 34 · 33 · 32 · 31

· 30 · 29 · 28 · 27 · 26 · 25 · 24 · 23 · 22 · 21

· 20 · 19 · 18 · 17 · 16 · 15 · 14 · 13 · 12 · 11

· 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1

= 30414093201713378043612608166064768844377641568960512000000000000.

This is a 64-digit number. Wow. But of course, this is a ‘dreamlike’ scenario, it
is surreal, it does not mirror the reality. So understand the above as a mathematical
model. As a mathematical model, though, it makes perfect sense. It is just one of
a handful down-to-earth ways off the top of my head to make your impression of
the concept of factorials more evocative. The main thrust of the concept of fatorials
is genuinely mathematical. So, let’s put the metaphor part

(

the part where the

numbers represent money
)

aside, and let’s talk about the mathematical side of it.

So, 50!. First, I think my computer did this one brute-force, as in it just multiplied
1 through 50. It did it in a split-second. Not so surprising. The truth is, it will be
different for the factorials of larger numbers, like 1000000!, or 1000000000!.
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First of all, the numbers of digits for numbers like 1000000!, and 1000000000!,
are astronomical, so it is not possible to display on the screen the entire answer. So
your computer would provide the ball-park figure. If it were to do those brute-force,
it would take forever to finish the job. But if you enter something like 1000000000!,
your computer can still perform it and gives the answer

(

which is, like I said, a

ball-park figure
)

in a matter of split-seconds. How do they do that? Do you want to
know?

Sure. The next thing I say is very important, so listen: The moment it recognizes
the problem, it immediately says to itself “forget brute-force calculation”, to multiply
1 through one million. “No way, that’s beyond my capacity.” But then it quickly
identifies the theorem pre-installed that helps computing the figure with the least
amount of calculations. And that theorem itself is actually old, was devised around
1730. So, there is actually some “theory behind computing factorials”. In order to
reveal what that is, somehow, we need to study more closely about the behavior of

(

1+
1

n

)n

; n = 1, 2, 3, 4, 5, ···

as n grows larger. We already know two things about this sequence. (a) This is an
increasing sequence. (b) No matter how large n is, the number cannot exceed 3.
You maight feel I am rather abruptly changing the subject, this is seemingly unrelated
to the factorials, but not so fast. The following simple observation is actually very
helpful toward our goal:

“ When you write a binomial coefficient in a fraction form, the

denominator is a factorial number. ”

Example.

(

7

3

)

=
7 · 6 · 5

1 · 2 · 3
=

7 · 6 · 5

3!
,

(

9

5

)

=
9 · 8 · 7 · 6 · 5

1 · 2 · 3 · 4 · 5
=

9 · 8 · 7 · 6 · 5

5!
,

(

10

4

)

=
10 · 9 · 8 · 7

1 · 2 · 3 · 4
=

10 · 9 · 8 · 7

4!
.

More generally:
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• Binomial coefficients expressed in terms of factorials — I.

Let n and k be integers, with 0 < k < n. Then the binomial coefficient
(

n

k

)

is written as

(

n

k

)

=
n

(

n−1
) (

n−2
)

···
(

n−k+1
)

k ! .

Now, from this perspective let’s revisit “Review of Lectures – X”. We binomially

expanded

(

1+
1

5

)5

, as in

(5)

(

1+
1

5

)5

=

(

5

0

)

· 15

+

(

5

1

)

· 14 ·

(

1

5

)

+

(

5

2

)

· 13 ·

(

1

5

)2

+

(

5

3

)

· 12 ·

(

1

5

)3

+

(

5

4

)

· 1 ·

(

1

5

)4

+

(

5

5

)

·

(

1

5

)5

.

We rewrote this as
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1

+
5

1
·

1

5

+
5 · 4

1 · 2
·

1

5 · 5

+
5 · 4 · 3

1 · 2 · 3
·

1

5 · 5 · 5

+
5 · 4 · 3 · 2

1 · 2 · 3 · 4
·

1

5 · 5 · 5 · 5

+
5 · 4 · 3 · 2 · 1

1 · 2 · 3 · 4 · 5
·

1

5 · 5 · 5 · 5 · 5
,

and further rewrote this as

1

+
1

1
·

5

5

+
1

1 · 2
·

5

5
·

4

5

+
1

1 · 2 · 3
·

5

5
·

4

5
·

3

5

+
1

1 · 2 · 3 · 4
·

5

5
·

4

5
·

3

5
·

2

5

+
1

1 · 2 · 3 · 4 · 5
·

5

5
·

4

5
·

3

5
·

2

5
·

1

5
.

Incorporating the factorial notation, this is
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1

+
1

1!
·

5

5

+
1

2!
·

5

5
·

4

5

+
1

3!
·

5

5
·

4

5
·

3

5

+
1

4!
·

5

5
·

4

5
·

3

5
·

2

5

+
1

5!
·

5

5
·

4

5
·

3

5
·

2

5
·

1

5
.

So, in short,

(5)

(

1+
1

5

)5

= 1

+
1

1!
·

5

5

+
1

2!
·

5

5
·

4

5

+
1

3!
·

5

5
·

4

5
·

3

5

+
1

4!
·

5

5
·

4

5
·

3

5
·

2

5

+
1

5!
·

5

5
·

4

5
·

3

5
·

2

5
·

1

5
.

(term 5-0)

(term 5-1)

(term 5-2)

(term 5-3)

(term 5-4)

(term 5-5)

9



What’s clear is

Fact A-5.

(

1+
1

5

)5

< 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
.

(

See “Review of Lectures – XI” page 6–7.
)

Similarly,

(6)

(

1+
1

6

)6

= 1

+
1

1!
·

6

6

+
1

2!
·

6

6
·

5

6

+
1

3!
·

6

6
·

5

6
·

4

6

+
1

4!
·

6

6
·

5

6
·

4

6
·

3

6

+
1

5!
·

6

6
·

5

6
·

4

6
·

3

6
·

2

6

+
1

6!
·

6

6
·

5

6
·

4

6
·

3

6
·

2

6
·

1

6

(term 6-0)

(term 6-1)

(term 6-2)

(term 6-3)

(term 6-4)

(term 6-5)

(term 6-6)

What’s clear is

Fact A-6.

(

1+
1

6

)6

< 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
.

On the other hand,
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(7)

(

1+
1

7

)7

= 1

+
1

1!
·

7

7

+
1

2!
·

7

7
·

6

7

+
1

3!
·

7

7
·

6

7
·

5

7

+
1

4!
·

7

7
·

6

7
·

5

7
·

4

7

+
1

5!
·

7

7
·

6

7
·

5

7
·

4

7
·

3

7

+
1

6!
·

7

7
·

6

7
·

5

7
·

4

7
·

3

7
·

2

7

(term 7-0)

(term 7-1)

(term 7-2)

(term 7-3)

(term 7-4)

(term 7-5)

(term 7-6)

+
(

an extra term, which is positive
)

,

(8)

(

1+
1

8

)8

= 1

+
1

1!
·

8

8

+
1

2!
·

8

8
·

7

8

+
1

3!
·

8

8
·

7

8
·

6

8

+
1

4!
·

8

8
·

7

8
·

6

8
·

5

8

+
1

5!
·

8

8
·

7

8
·

6

8
·

5

8
·

4

8

+
1

6!
·

8

8
·

7

8
·

6

8
·

5

8
·

4

8
·

3

8

(term 8-0)

(term 8-1)

(term 8-2)

(term 8-3)

(term 8-4)

(term 8-5)

(term 8-6)

+
(

extra terms, which are all positive
)

,

11



(9)

(

1+
1

9

)9

= 1

+
1

1!
·

9

9

+
1

2!
·

9

9
·

8

9

+
1

3!
·

9

9
·

8

9
·

7

9

+
1

4!
·

9

9
·

8

9
·

7

9
·

6

9

+
1

5!
·

9

9
·

8

9
·

7

9
·

6

9
·

5

9

+
1

6!
·

9

9
·

8

9
·

7

9
·

6

9
·

5

9
·

4

9

(term 9-0)

(term 9-1)

(term 9-2)

(term 9-3)

(term 9-4)

(term 9-5)

(term 9-6)

+
(

extra terms, which are all positive
)

,

(10)

(

1+
1

10

)10

= 1

+
1

1!
·

10

10

+
1

2!
·

10

10
·

9

10

+
1

3!
·

10

10
·

9

10
·

8

10

+
1

4!
·

10

10
·

9

10
·

8

10
·

7

10

+
1

5!
·

10

10
·

9

10
·

8

10
·

7

10
·

6

10

+
1

6!
·

10

10
·

9

10
·

8

10
·

7

10
·

6

10
·

5

10

(term 10-0)

(term 10-1)

(term 10-2)

(term 10-3)

(term 10-4)

(term 10-5)

(term 10-6)

+
(

extra terms, which are all positive
)

,
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and so on so forth. Here, as for the line “extra terms which are all positive” in each
of part (7) through part (10), we don’t need the precise form of that.

Now, let me pick up (term 6-2), (term 7-2), (term 8-2), (term 9-2) and (term 10-2):

1

2!
·

6

6
·

5

6

1

2!
·

7

7
·

6

7

1

2!
·

8

8
·

7

8

1

2!
·

9

9
·

8

9

1

2!
·

10

10
·

9

10

(term 6-2)

(term 7-2)

(term 8-2)

(term 9-2)

(term 10-2)

◦ Each of these terms is smaller than
1

2!
. However, as you keep moving down

in this list, the number
(

for (term n-2), with n = 100, 1000, ...
)

is getting

closer and closer to
1

2!
as n grows larger, because the values of

5

6
,

6

7
,

7

8
,

8

9
,

9

10
, ···

are getting closer and closer to 1.

Similarly, pick up (term 6-3), (term 7-3), (term 8-3), (term 9-3) and (term 10-3):

1

3!
·

6

6
·

5

6
·

4

6

1

3!
·

7

7
·

6

7
·

5

7

1

3!
·

8

8
·

7

8
·

6

8

1

3!
·

9

9
·

8

9
·

7

9

1

3!
·

10

10
·

9

10
·

8

10

(term 6-3)

(term 7-3)

(term 8-3)

(term 9-3)

(term 10-3)
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◦ Each of these terms is smaller than
1

3!
. However, as you keep moving down

in this list, the number
(

for (term n-3), with n = 100, 1000, ...
)

is getting

closer and closer to
1

3!
as n grows larger, because, in addition to the above,

the values of

4

6
,

5

7
,

6

8
,

7

9
,

8

10
, ···

are getting closer and closer to 1.

Now, the same thing is said about the other terms. Namely:

◦ Each of (term 6-4), (term 7-4), (term 8-4), (term 9-4), (term 10-4), etc. are

smaller than
1

4!
. However, (term n-4) is getting closer and closer to

1

4!

as n grows larger.

◦ Each of (term 6-5), (term 7-5), (term 8-5), (term 9-5), (term 10-5), etc. are

smaller than
1

5!
. However, (term n-5) is getting closer and closer to

1

5!

as n grows larger.

◦ Each of (term 6-6), (term 7-6), (term 8-6), (term 9-6), (term 10-6), etc. are

smaller than
1

6!
. However, (term n-6) is getting closer and closer to

1

6!

as n grows larger.

So, what does this entail? Yes, as n grows larger, eventually, the following happens:
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As n grows larger, the sum of

◦ the deficit of by how much (term n-2) is short of
1

2!
,

◦ the deficit of by how much (term n-3) is short of
1

3!
,

◦ the deficit of by how much (term n-4) is short of
1

4!
, and

◦ the deficit of by how much (term n-5) is short of
1

5!
,

will get closer and closer to 0, whereas (term n-6) is at least

1

6!
·

6

6
·

5

6
·

4

6
·

3

6
·

2

6
·

1

6

(

which is just (term 6-6)
)

and it keeps growing. So ultimately, at some point, when

n becomes large enough, the number

(

1+
1

n

)n

exceeds the value

1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
.

Hence we have proved the following:

Fact B-5. If you choose a large enough n, then

(

1+
1

n

)n

> 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
.

• Extrapolation leads:
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Fact B-6. If you choose a large enough n, then

(

1+
1

n

)n

> 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
.

Fact B-7. If you choose a large enough n, then

(

1+
1

n

)n

> 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
+

1

7!
.

Fact B-8. If you choose a large enough n, then

(

1+
1

n

)n

> 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
+

1

7!
+

1

8!
.

Fact B-9. If you choose a large enough n, then

(

1+
1

n

)n

> 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
+

1

7!
+

1

8!
+

1

9!
.

Fact B-10. If you choose a large enough n, then

(

1+
1

n

)n

> 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
+

1

7!
+

1

8!
+

1

9!
+

1

10!
.
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And so on and so forth. We can acutally compress all of thse into one single
statement, which is as follows:

Fact B. Let k be an arbitrarily chosen positive integer, and fixed. By choosing

a large enough n, we can make the following inequality true:

(

1+
1

n

)n

> 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+ ··· +

1

k ! .

⋆ Meanwhile, Fact A-5 and Fact A-6
(

on page 10
)

can be generalized to

Fact A. Let k be an arbitrary positive integer. Then

(

1+
1

k

)k

< 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+ ··· +

1

k ! .

So, what do these mean altogether? Yes, Fact A and Fact B mean precisely as follows:

Fact A and Fact B Compiled in one.

“ If you compare

(

1+
1

k

)k

and

1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+ ··· +

1

k ! ,

for the same k, then always the latter is bigger, however, the latter

is exceeded by

(

1+
1

n

)n

for a different, larger, n.
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⋆ So, what does this really entail? Yes, by virtue of this, we have reached one
important conclusion

(

‘Conclusion’ below
)

.

Definition 1. The limit

lim
n−→∞

(

1+
1

n

)n

means the ‘threshold’ number, the smallest number which

(

1+
1

n

)n

cannot

exceed when n runs through the entire positive integers.

Definition 2. The limit

lim
k−→∞

(

1+
1

1!
+

1

2!
+

1

3!
+

1

4!
+ ··· +

1

k !

)

means the ‘threshold’ number, the smallest number which

1+
1

1!
+

1

2!
+

1

3!
+

1

4!
+ ··· +

1

k !

cannot exceed when k runs through the entire positive integers.

Conclusion. The above two limits are indeed equal.

lim
n−→∞

(

1+
1

n

)n

= lim
k−→∞

(

1+
1

1!
+

1

2!
+

1

3!
+

1

4!
+ ··· +

1

k !

)

.
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• We denote this number as e. Thus

Definiiton 3
(((

The precise mathematical definition of eee
)))

.

e = lim
n−→∞

(

1+
1

n

)n

= lim
k−→∞

(

1+
1

1!
+

1

2!
+

1

3!
+

1

4!
+ ··· +

1

k !

)

.

• Decimal expression of eee.

e = 2.7182818284590452353602874713526624977572470936999...

Actually, if you care to do

1 +
1

1!
,

1 +
1

1!
+

1

2!
,

1 +
1

1!
+

1

2!
+

1

3!
,

1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
,

1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
,

1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
,

1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
+

1

7!
,

· ·· ·· ·
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in your calculator
(

computer
)

, then

1 +
1

1!

1 +
1

1!
+

1

2!

1 +
1

1!
+

1

2!
+

1

3!

1 +
1

1!
+

1

2!
+

1

3!
+

1

4!

1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!

1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!

1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
+

1

7!

= 2,

= 2.5,

= 2.6666666... ,

= 2.7083333... ,

= 2.7166666... ,

= 2.7180555... ,

= 2.7182539... ,

· ·· ·· ·

As you keep moving, you quickly realize that the digits get stagnant. Actually, that
might be a little hard to see, because your calculator can only show so many digits
in the display screen

(

eight, ten or twelve, or around that, depending on the model
)

,
so you may not know what is really going on after the eighth, tenth or twelfth digit.
But I can show you the following which I transcribed from my computer

(

Maple
)

:

• The table of the decimal expression of the values

1+
1

1!
+

1

2!
+

1

3!
+

1

4!
+ ··· +

1

k !

for k = 1, 2, 3, 4, ··· , 30
(

up to the 30th digit under the decimal point
)

:
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k = 1 =⇒ 2

k = 2 =⇒ 2.5

k = 3 =⇒ 2.666666666666666666666666666666...

k = 4 =⇒ 2.708333333333333333333333333333...

k = 5 =⇒ 2.716666666666666666666666666666...

k = 6 =⇒ 2.718055555555555555555555555555...

k = 7 =⇒ 2.718253968253968253968253968253...

k = 8 =⇒ 2.718278769841269841269841269841...

k = 9 =⇒ 2.718281525573192239858906525573...

k = 10 =⇒ 2.718281801146384479717813051146...

k = 11 =⇒ 2.718281826198492865159531826198...

k = 12 =⇒ 2.718281828286168563946341724119...

k = 13 =⇒ 2.718281828446759002314557870113...

k = 14 =⇒ 2.718281828458229747912287594827...

k = 15 =⇒ 2.718281828458994464285469576474...

k = 16 =⇒ 2.718281828459042259058793450327...

k = 17 =⇒ 2.718281828459045070516047795848...

k = 18 =⇒ 2.718281828459045226708117481710...

k = 19 =⇒ 2.718281828459045234928752728335...

k = 20 =⇒ 2.718281828459045235339784490666...

k = 21 =⇒ 2.718281828459045235359357431729...

k = 22 =⇒ 2.718281828459045235360247110869...

k = 23 =⇒ 2.718281828459045235360285792570...

k = 24 =⇒ 2.718281828459045235360287404308...

k = 25 =⇒ 2.718281828459045235360287468777...

k = 26 =⇒ 2.718281828459045235360287471257...

k = 27 =⇒ 2.718281828459045235360287471349...

k = 28 =⇒ 2.718281828459045235360287471352...

k = 29 =⇒ 2.718281828459045235360287471352...

k = 30 =⇒ 2.718281828459045235360287471352...
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Now you have a better idea how the digits get stagnant as you move down on
the list. As you can see, the last three are completely identical. But that’s because
you are only looking at the first 30 digits under the decimal point. If you look at
the digits farther right, then you will find that those three numbers

(

the one with

k = 28; the one with k = 29; and the one with k = 30
)

are actually different.

So what I am saying is, even beyond the 30th digit under the decimal point, the
same is happening. If you look at the 100th, the 1000th, or the 10000th, digit under
the decimal point, it will get stagnant if you move down on the list deep enough. No
matter how far to the right from the decimal point it is that you are looking at, it
will eventually get stagnant if you go down on the list deep enough.

So, e is the number with non-terminating decimal expression
(

meaning the deci-

mal expression never stops
)

, each of whose digits is the stagnated digit in the above
sequence at the respective place under the decimal point.

This number e is so fundamental in mathematics. e shows up everywhere in
mathematics. For example, e has a bearing on the theory of large factorials which I
briefly alluded

(

the technical term: “asymptotic expansion”
)

. I plan to cover that
subject in due course.

In relation to the last lecture
(

“Review of Lectures – XI”
)

, we used the metaphor
you deposited a dollar in your bank account, and your bank offers an annual rate of
100 percent interest. If the compounding takes place continuously , then, after one
year, the dollar amount of your balance is exactly e.

• Appendix. The following is only subsidiary inquiry. In view of Fact B in
page 17, it makes sense to find the smallest positive integer n which makes the same
inequality as in the statement of Fact B true. The smallest such n depends on k. I
don’t know if there is a simple formula for n as a function dependent on k, but for
small k

(

k = 2, 3, 4, 5, 6, 7, 8 and 9
)

the answers are below
(

I relied on Maple

software
)

:

(2) The smallest positive integer n such that

(

1+
1

n

)n

> 1 +
1

1!
+

1

2!

is n = 6.

22



(3) The smallest positive integer n such that

(

1+
1

n

)n

> 1 +
1

1!
+

1

2!
+

1

3!

is n = 26.

(4) The smallest positive integer n such that

(

1+
1

n

)n

> 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!

is n = 136.

(5) The smallest positive integer n such that

(

1+
1

n

)n

> 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!

is n = 841.

(6) The smallest positive integer n such that

(

1+
1

n

)n

> 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!

is n = 6006.

(7) The smallest positive integer n such that

(

1+
1

n

)n

> 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
+

1

7!

is n = 48784.
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(8) The smallest positive integer n such that

(

1+
1

n

)n

> 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
+

1

7!
+

1

8!

is n = 444364.

(9) The smallest positive integer n such that

(

1+
1

n

)n

> 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
+

1

7!
+

1

8!
+

1

9!

is n = 4487304.
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