Math 105 TOPICS IN MATHEMATICS

REVIEW OF LECTURES - XI (SUPPLEMENT)

February 13 (Fri), 2015
Instructor: Yasuyuki Kachi
Line \#: 52920.
Appendix to §11. Football Series - "Half the distance to the goal'.
\star Out of the blue, how much is the each of the following?
(1) $\frac{1}{2}+\frac{1}{2}=$?

$$
\begin{equation*}
\frac{1}{2}+\frac{1}{4}+\frac{1}{4}=? \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}=? \tag{3}\\
& \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{16}=? \tag{4}
\end{align*}
$$

$$
\begin{equation*}
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{32}=? \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{64}=? \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{128}=? \tag{7}
\end{equation*}
$$

I will give you a clue. Do it one by one, as in do (1), (2), (3), (4), (5), (6) and (7) in this order. In each line, calculate the underlined portion first (below):

$$
\begin{equation*}
\frac{1}{2}+\frac{1}{2}=? \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{64}=? \tag{6}\\
& \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{128}=? \tag{7}
\end{align*}
$$

$[$ Solutions $]:$

(1) $\frac{1}{2}+\frac{1}{2} \quad$ apparently equals 1.
(2) The underlined part is $\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$. So part (2) is just $\frac{1}{2}+\frac{1}{2}$. This equals 1 .
(3) The underlined part is $\frac{1}{8}+\frac{1}{8}=\frac{1}{4}$. So part (3) is reduced to

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{4}
$$

This is exactly part (2). We have already calculated it and it equals 1.
(4) The underlined part is $\frac{1}{16}+\frac{1}{16}=\frac{1}{8}$. So part (4) is reduced to

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}
$$

This is exactly part (3). We have already calculated it and it equals 1.
(5) The underlined part is $\frac{1}{32}+\frac{1}{32}=\frac{1}{16} . \quad$ So part (5) is reduced to

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{16}
$$

This is exactly part (4). We have already calculated it and it equals 1.
(6) The underlined part is $\frac{1}{64}+\frac{1}{64}=\frac{1}{32}$. So part (5) is reduced to

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{32} .
$$

This is exactly part (5). We have already calculated it and it equals 1.
(7) The underlined part is $\frac{1}{128}+\frac{1}{128}=\frac{1}{64} . \quad$ So part (5) is reduced to

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{64}
$$

This is exactly part (6). We have already calculated it and it equals 1.

* Let's summarize the above:

$$
\begin{equation*}
\frac{1}{2}+\frac{1}{2}=1 \tag{1}
\end{equation*}
$$

(2) $\frac{1}{2}+\frac{1}{4}+\frac{1}{4}=1$.

$$
\begin{equation*}
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}=1 \tag{3}
\end{equation*}
$$

$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{16}=1$

$$
\begin{equation*}
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{32}=1 \tag{5}
\end{equation*}
$$

(6)

$$
\begin{align*}
& \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{64}=1 \\
& \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{128}=1 \tag{7}
\end{align*}
$$

Can you continue? Sure.

$$
\begin{equation*}
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{256}=1 \tag{8}
\end{equation*}
$$

$$
\begin{align*}
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+ & \frac{1}{128}+\frac{1}{256} \tag{9}\\
& +\frac{1}{512}+\frac{1}{512}=1
\end{align*}
$$

(10)

$$
\begin{aligned}
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32} & +\frac{1}{64}+\frac{1}{128}+\frac{1}{256} \\
& +\frac{1}{512}+\frac{1}{1024}+\frac{1}{1024}=1
\end{aligned}
$$

Paraphrase.

(1) $\frac{1}{2}$
is $\quad \frac{1}{2} \quad$ short of 1.
(2) $\frac{1}{2}+\frac{1}{4}$
is $\quad \frac{1}{4} \quad$ short of 1.
(3) $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}$
is $\quad \frac{1}{8} \quad$ short of 1.
(4) $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}$
is $\frac{1}{16} \quad$ short of 1.
(5) $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}$
is $\frac{1}{32}$ short of 1.
(6) $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}$
is $\frac{1}{64}$ short of 1.

$$
\begin{equation*}
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128} \tag{7}
\end{equation*}
$$

is $\frac{1}{128} \quad$ short of 1.
(8)

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}
$$

is $\frac{1}{256}$ short of 1.

$$
\begin{equation*}
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512} \tag{9}
\end{equation*}
$$

is $\frac{1}{512}$ short of 1.
(10) $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}$ is $\frac{1}{1024}$ short of 1.
\star In the above, the denominators of the fractions in sight are all 2-to-the-powers:

$$
\begin{array}{llr}
2^{1} & = & 2, \\
2^{2} & = & 4, \\
2^{3} & = & 8, \\
2^{4} & = & 16, \\
2^{5} & = & 32, \\
2^{6} & =64, \\
2^{7} & = & 128, \\
2^{8} & = & 256, \\
2^{9} & =512, \\
2^{10} & =1024,
\end{array}
$$

Accrodingly, we can duplicate the above as
(1) $\frac{1}{2^{1}}$
is $\frac{1}{2^{1}} \quad$ short of 1.
(2) $\frac{1}{2^{1}}+\frac{1}{2^{2}}$
is $\frac{1}{2^{2}} \quad$ short of 1.
(3) $\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}$
is $\frac{1}{2^{3}}$ short of 1.
(4) $\quad \frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}$
is $\quad \frac{1}{2^{4}} \quad$ short of 1.
(5) $\quad \frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}+\frac{1}{2^{5}}$
is $\frac{1}{2^{5}}$ short of 1.
(6) $\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}+\frac{1}{2^{5}}+\frac{1}{2^{6}}$
is $\quad \frac{1}{2^{6}} \quad$ short of 1.

$$
\begin{equation*}
\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}+\frac{1}{2^{5}}+\frac{1}{2^{6}}+\frac{1}{2^{7}} \tag{6}
\end{equation*}
$$

is $\frac{1}{2^{7}} \quad$ short of 1.

$$
\begin{equation*}
\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}+\frac{1}{2^{5}}+\frac{1}{2^{6}}+\frac{1}{2^{7}}+\frac{1}{2^{8}} \tag{8}
\end{equation*}
$$

is $\frac{1}{2^{8}} \quad$ short of 1.

$$
\begin{equation*}
\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}+\frac{1}{2^{5}}+\frac{1}{2^{6}}+\frac{1}{2^{7}}+\frac{1}{2^{8}}+\frac{1}{2^{9}} \tag{9}
\end{equation*}
$$

is $\frac{1}{2^{9}} \quad$ short of 1.

$$
\begin{equation*}
\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}+\frac{1}{2^{5}}+\frac{1}{2^{6}}+\frac{1}{2^{7}}+\frac{1}{2^{8}}+\frac{1}{2^{9}}+\frac{1}{2^{10}} \tag{10}
\end{equation*}
$$

is $\frac{1}{2^{10}}$ short of 1.
\star By extrapolating, we conclude

Formula.

$$
\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}+\cdots+\frac{1}{2^{n}} \quad \text { is } \quad \frac{1}{2^{n}} \quad \text { short of } 1 .
$$

Formula paraphrased.

$$
\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}+\frac{1}{2^{5}}+\cdots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}
$$

Exercise. (a) How much is the following quantity?

$$
\begin{array}{r}
\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}+\frac{1}{2^{5}}+\frac{1}{2^{6}}+\frac{1}{2^{7}}+\frac{1}{2^{8}}+\frac{1}{2^{9}}+\frac{1}{2^{10}} \tag{20}\\
+\frac{1}{2^{11}}+\frac{1}{2^{12}}+\frac{1}{2^{13}}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}+\frac{1}{2^{17}}+\frac{1}{2^{18}}+\frac{1}{2^{19}}+\frac{1}{2^{20}} .
\end{array}
$$

(b) Is the above quantity less than 1 , greater than 1 , or equal to 1 ?
[Answer $]$:
(a) $1-\frac{1}{2^{20}}$.
(b) Less than 1 .

* I can use the following model to explain what the above formula says:

Metaphor. In a football game, suppose the ball is placed at the 50 yard line.
Then half the distance to the goal line is one half of 50 yards, which is $\frac{50}{2}=25$ yards. Suppose you gain precisely that yardage. So in the next play, the ball is placed at the $\frac{50}{2}=25$ yard line.

Then half the distance to the goal line is one half of $\frac{50}{2}=25$ yards, which is $\frac{50}{4}=12.5$ yards. Suppose you gain precisely that yardage. So in the next play, the ball is placed at the $\frac{50}{4}=12.5$ yard line.

Then half the distance to the goal line is one half of $\frac{50}{4}=12.5$ yards, which is $\frac{50}{8}=6.25$ yards. Suppose you gain precisely that yardage. So in the next play, the ball is placed at the $\frac{50}{8}=6.25$ yard line.

Then half the distance to the goal line is one half of $\frac{50}{8}=6.25$ yards, which is $\frac{50}{16}=3.125$ yards. Suppose you gain precisely that yardage. So in the next play, the ball is placed at the $\frac{50}{16}=3.125$ yard line, and so on so forth.

No matter how many times you keep gaining half the distance to the goal line, the ball never reaches the goal line.

