
Math 105 TOPICS IN MATHEMATICS

REVIEW OF LECTURES – XI

February 13 (Fri), 2015

Instructor: Yasuyuki Kachi

Line #: 52920.

§11. e. Continued.

• Last time I claimed the following at the end:

Claim. The numbers

(

1+
1

n

)

n

; n = 1, 2, 3, 4, ··· , cannot become arbitrarily

large. Indeed, the digit before the decimal point in the decimal expression of each
of these numbers is always 2, no matter how large n is. In other words, these
numbers are all between 2 and 3.

Today I am going to give a mathematical reasoning why the above claim is true.
But first I am going to tell you that something like this naturally meshes well with
some real life example. Before everything, in the following ‘Metaphor’, we relax the
smallest currency unit, meaning: In reality, we cannot divide one cent. But here
we work on a model where one can divide any dollar amount by any large number
(

integer
)

. Also, we never round figures. So, one-third of a dollar is never the same

as 33 cents
(

because 33 cents is one-third of 99 cents
)

.

Metaphor. Now, you open a bank account, deposit a dollar in that account. Your
bank offers 10 percent interest annually. After one year, your balance is a dollar and
ten cents. But suppose another bank offers 100 percent interest annually. Then you
probably want to forget the first bank and rush to the second bank, right? So you
actually went to the second bank, with 100 percent annual interest rate. There you
opened a bank account, and deposited a dollar in that account. Then after one year
your balance is two dollars. A much better deal.

Intermission. Since the interest calculation with the second bank is easier so let’s
stick with the second bank. Indeed, as it turns out, with any interest rate the gist of
what I’m going to lay out is the same. The difference is a constant multiplication in
the exponent. Having or not having that constant is mathematically insubstantial.
With the 100 percent of the rate we can make that constant 1, or in other words, that
way we can get rid of the subsidiary constant. The general case is easily reconstructed
from that special case with an obvious tweak. So let’s forget the first bank with 10
percent interest, and stick with the second bank with 100 percent interest.
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Metaphor continued. Now, in the second bank, with 100 percent interest, sup-
pose you don’t mess with your account, as in once you have opened the account and
made a dollar of a deposit, you never withdraw money, or make additional deposit.
You just let your money sit there. Like I said, after the first year, the balance is two
dollars, of which one dollar is accrued as an interest. After the second year, should
the balance be three dollars, or four dollars?

If you say three dollars, then that’s correct, because the annual interest rate is
100 percent, and your deposit was one dollar, so besides the interest accrued after
the first year period, which is a dollar, another dollar was accrued as an interest by
virtue of the fact that that original one dollar deposit remained to sit throughout the
second year.

But some of you might say no, four dollars, because at the end of the first year
your deposit grew into two dollars. 100 percent of two dollars should be added to
your balance as the interest for the second year. If you say so, you are correct too.

So, both are correct. Namely, it depends on whether your bank says your accrued
interest is included or not as the base of calculating the interest for the next period.
In other words, it depends on whether your banks says the interest is compounded.

Another Intermission. Actually, my take is, if my bank has a non-compounded
interest system, then I would withdraw all two dollars of my money after one year,
close my account, and then open a brand new account and make a deposit of two
dollars. Then my bank has to base two dollars in calculating the interest for the
next period, so this has the same effect as the compounded interest

(

assuming that

there is no fee in opening and closing accounts
)

. So, in this sense, banks should offer
a compound interest or they would have to deal with the never-ending demands of
closing and re-opening of accounts, which is impractical.

Metaphor continued. On that basis the second bank actually offers a compound
interest with 100 percent interest rate annually. But then there is a third bank, a
competitor, that advertises as follows: They offer the same interest rate of 100
percent annually, but they calculate the intest more frequently than once a year,
namely, twice a year.
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Don’t be misled: What the third bank is not saying is they offer 100 percent
interest semi-anunally, so your money would grow like after six months what was
originally a dollar would grow into two dollars, and then after another six months
that two dollars would further grow into four dollars, and so on. That’s not what
they are advertising. They assessed their financial competency and figured out that
they would bankrupt if they did that. But rather, they can still afford to offer the
following deal: They keep the 100 percent annual interest rate, but the 100 percent
annual rate translates to 50 percent semi-annual interest rate. But if compounding
takes place semi-annually with that rate, that’s a better deal than the 100 percent
annual interest rate with compounding taking place just annually. Are you following
me? Let’s mathematically dissect.

◦ With the second bank
(

annual interest rate is 100 percent, compounded

annually
)

, after 1 year your balance is

$
(

1+1
)

.

◦ With the third bank
(

annual interest rate is 100 percent, compounded

semi-annually
)

, after
1

2
year your balance is

$
(

1+
1

2

)

,

and after 1 year it is

$
(

1+
1

2

)2

.

Now, there is a fourth bank, that tries to outplay the third bank, and they advertise
the 100 percent annual interest rate, which itself is the same, but they compound the

interest three times a year, each time applying
1

3
of 100 percent rate. Then

◦ With the fourth bank, your balance after
1

3
year is

$
(

1+
1

3

)

,
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after
2

3
year it is

$
(

1+
1

3

)2

,

and after 1 year it is

$
(

1+
1

3

)3

.

Now, there is a fifth bank, that tries to outplay the fourth bank, and they advertise
the 100 percent annual interest rate, which itself is the same, but they compound the

interest quarter-annually
(

four times a year
)

, each time applies
1

4
of 100 percent

interest rate. Then

◦ With the fifth bank, your balance after
1

4
year is

$
(

1+
1

4

)

,

after
2

4
year it is

$
(

1+
1

4

)2

,

after
3

4
year it is

$
(

1+
1

4

)3

,

and after 1 year it is

$
(

1+
1

4

)4

.
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And so on so forth. Do you see the picture here? Just focus on the balance after
one year, in each scenario

(

with each of the second through the fifth banks
)

. With
a dollar of a deposit, with 100 percent annual interest rate, and the compounding
takes place n times a year, with n = 1, 2, 3 and 4, the balance is

$
(

1+1
)1

,

$
(

1+
1

2

)2

,

$
(

1+
1

3

)3

,

and

$
(

1+
1

4

)4

,

respectively. We have mathematically verified last time that this is an increasing
sequence. What that translates to is that, the higher the compounding frequency is,
the more additional benefit you receive. Now, that is consistent with our intuition.
But here, the real question is, as we increase the compounding frequency, does the
benefit increase unlimitedly? As in can one dollar grow into one million dollars, one
billion dollars, or one trillion dollars, by setting the compounding frequency to be

certain time-length, such as ‘nanosecond’
(

=
1

109
seconds

)

?

What do you think? My answer is ‘no’. The additional gain will ultimately dimin-
ish as you keep increasing the compounding frequency. No matter how you set that
frequency, to be ‘nanosecond’ or shorter, the balance after 1 year is a little less than
three dollars. How come? This is exactly the claim that I showed you right at the
beginning of today’s class. Can you mathematically substantiate that claim? That’s
what we are going to do for the rest of today’s class.

So, we refer to the last lecture. What we have work out is that

(

1+
1

5

)5

equals the following quantity:
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1

+
1

1
·

5

5
x y

‖
©1

+
1

1 · 2
·

5

5
·

4

5
x y

‖
©2

+
1

1 · 2 · 3
·

5

5
·

4

5
·

3

5
x y

‖
©3

+
1

1 · 2 · 3 · 4
·

5

5
·

4

5
·

3

5
·

2

5
x y

‖
©4

+
1

1 · 2 · 3 · 4 · 5
·

5

5
·

4

5
·

3

5
·

2

5
·

1

5
.

x y

‖
©5

1But if you look at the portion underlined, they are all less than 1, except © equals
1:

5

5
= 1,

5

5
·
4

5
< 1,

5

5
·
4

5
·
3

5
< 1,
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5

5
·
4

5
·
3

5
·
2

5
< 1,

5

5
·
4

5
·
3

5
·
2

5
·
1

5
< 1

(

see “Review of Lectures – X Supplement”
)

. So, if you replace the underlined parts

with 1, then the resulting quantity becomes bigger
(

once again, see “Review of

Lectures – X Supplement”
)

. In short,

(

1+
1

5

)5

< 1 +
1

1
+

1

1 · 2
+

1

1 · 2 · 3
+

1

1 · 2 · 3 · 4
+

1

1 · 2 · 3 · 4 · 5
.

Now, if you further compare this latter quantity with

1 +
1

1
+

1

1 · 2
+

1

1 · 2 · 2
+

1

1 · 2 · 2 · 2
+

1

1 · 2 · 2 · 2 · 2

= 1 + 1 +
1

2
+

1

22
+

1

23
+

1

24
,

then this last quantity 1+ 1+
1

2
+

1

22
+

1

23
+

1

24
is clearly bigger, because

1

1 · 2 · 3
<

1

1 · 2 · 2
,

1

1 · 2 · 3 · 4
<

1

1 · 2 · 2 · 2
, and

1

1 · 2 · 3 · 4 · 5
<

1

1 · 2 · 2 · 2 · 2
.

Now, we know the fact that this last quantity 1 + 1 +
1

2
+

1

22
+

1

23
+

1

24

is
1

24
short of 3

(

see “Supplement”
)

.
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So, in short,

(

1+
1

5

)5

< 3.

The same argument works for

(n)

(

1+
1

n

)

n

,

with any n. In sum, we draw the following conclusion:

Conclusion. For an arbitrary positive integer n = 1, 2, 3, 4, ··· ,

(

1+
1

n

)

n

< 3.

• The next question is to identify the ‘limit’ of these numbers. Namely, we are going
to figure out the balance after one year with “continuous” compounding, namely, the
frequency of compounding n approaches to infinity.
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