Math 105 TOPICS IN MATHEMATICS
REVIEW OF LECTURES -1
January 21 (Wed), 2015

Instructor: Yasuyuki Kachi

Line #: 52920.

§1. WHAT IS MATHEMATICS? — THE RIEMANN HYPOTHESIS.

Welcome to Math 105, ‘Topics in Mathematics’. On your way to this class, you
were thinking oh, you are heading to your math class, and perhaps worrying that
maybe someone steals your spot, or you are just running late, and then you spotted
me in Jayhawk Boulevard, sigh of relief, but did it occur to you that you would
be asked ¢ what is mathematics ’ right off the bat as soon as you walked in to this
room?

First of all, ‘math’ is the short form for the word ‘mathematics’ and is spelled
m-a-t-h, but in United Kingdom it is ‘maths’, as in m-a-t-h-s. But here, I will just
use ‘math’, without ‘s’. So, let’s talk about some myth of math (no pun intended)
right off the bat:

Myth 1. Math is difficult.

— I can read your mind. You want me to say ‘no, math is easy, if taught right’.
So, here we go, the second myth:

Myth 2.  Your professor should be able to explain everything well and math is
actually easy. In a perfect world, that’s how it goes.

Myth 3. But in the real world, most math professors are not as skilled. That’s
why we end up hating math. We are good and the system is making us otherwise.

— Here the “system” is the keyword. Let’s dissect.

Myth 3'. In math, something is difficult means computationally difficult, not
conceptually difficult. Complexity is never what the nature of math calls for. My
professor always makes it complex so as to make sure some of us fail. But even the
complex ones are solvable by the computer. In other words, math is simple in reality,
and complex in disguise.

Myth 3”. 1In short, math classes are just ‘inconvenience’ to us. We are learning

what’s being outdated. Let’s let our computer do the job.
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Myth 4. So we have created a new standard, which is totally cool. Being bad at
math doesn’t mean you are dumb. You're normal. Meanwhile, being good at math
= moron.

Myth 4'. So math classes are dope. There should be ten math professors in
the world, good looking ones, for the YouTube lectures, which nobody is going to
watch anyway. Otherwise math professors are just “campus misfits”. By the way,
the “campus misfits” part was not coming from me, but from Professor Lang.

This is a politically charged topic. As I said earlier, I will eventually address
it. Today, let me just say that about one hundred thousand to a quarter million
are probably the right numbers for the mathematicians’ population in the world, to
cover the breadth of research mathematics, just like the number of medical doctors
should be at least in that scale. I know you are skeptical. I will address it. But first
thing first, let’s take another look at

“So, math is deceptively difficult but it is actually easy.”

First and foremost, math is a cutting edge science . We certainly have some ideas
about blackholes and big-bang theory in astrophysics, and stem cell research in
biomedicine. Those are in vogue. What is cutting edge in math? I will give you
an example. This is not something your usual math class teaches. But this is widely
known, not a secret or anything.

There is a so-called ‘The Riemann Hypothesis’. Bernhard Riemann (1826—1866),
who seems to continue to earn the split popular vote for the best mathematical genius
in the all-time history of math (along with Gauss and Euler, and a few others)
has come up with this ‘conjecture’ (a conundrum). After having encountered a
very curious and peculiar phenomenon while investigating what’s known today as
Riemann’s zeta function, Riemann saw that this is very likely true. So he decided
to submit this as a conjecture. No one before him had come up with the same.
And that was 1859. Little did he know was it would quickly become known as an
absolutely impenetrable problem. In fact, It stood for the next 1554 years, had
refuted the relentless ultra-intense scrutiny by the top notch mathematical geniuses
in the subsequent eras, aided by the most advanced cutting-edge math technology
devised specifically by those people to assault it. It still remains as an open problem
today, January 21st, 2015.

By the way, computers cannot solve it. I am going to tell you why in a lit-
tle bit. (That would be my retort to the above raised points at once.) Anybody
who solves this problem today would instantly become famous. An organization
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called Clay Mathematical Institute (CMI) * offers some prize money on this problem
along with a half-dozen other math problems. The amount is one million dollars,
actually. While trying not to over-generalize it, money is generally not an incentive
for mathematicians. I described to some extent this psyche of mathematicians in the
document “Background Information” which I made available to you. By the way, 1
have the honor to be personally acquainted with one professor, and his disciple who
is also a professor, both of whom are the authorities of the Riemann Hypothesis.
Their stature is they are among those handful people closest to the ultimate clue to
the Riemann Hypothesis. They might actually have a shot at it.

Now, at least a few dozen different possible approaches are known to exist. Of
course, nobody knows which one, or any one of them, would work. I myself am
not working on the Riemann Hypothesis, as in I am not trying to hit the goldmine
and become famous. (Disclaimer: nothing wrong in pursuing fame.) It’s a gamble
because your effort is likely futile given the level of difficulty, and it will ruin your
career namely, you would have been successful in working on something else. A
common wisdom here is the amount of risks you run and the amount of costs you
pay in assaulting a famous problem is extremely high — a high-risk, high-return, deal.
Though I do not make a frontal attack, my research expertise partially encompasses
this subject, indeed, Riemann’s zeta function has such a multi-faceted personality
that it infiltrates into my areas of expertise.

Now, quite simply, why is the Riemann Hypothesis so important? Because this
has to do with the so-called ‘distribution of prime numbers’. Some numbers have the
property it cannot be written as a result of multiplying two smaller numbers. Those
are called ‘prime numbers’. Actually, that is a little imprecise. In fact, any number
greater than 1 can be written as a product of two smaller numbers. For example, 5
can be written as

Yes, this is a legit identity, but this expression of 5 involves a ‘non-integer’ — =

2.5.  So, I haven’t made precise the notion of ‘prime numbers’ yet. Making it
precise necessitates me to specify what exactly kind of numbers should be involved
in factoring. There are actually two kinds of numbers. Namely, there are so-called
‘integers’, and then there are so-called ‘non-integers’. I must specify the meaning
of those terms. Don’t get stressed out. The idea here is that you always have to
make sure you leave absolutely no room for ambiguity. That’s a part of the nature
of mathematics.

* www.claymath.org/millennium-problems




Definition (integers).

(1)  Numbers 1, 2, 3, 4, --- , are called positive integers .

o If n is a positive integer, then n + 1 is a positive integer.

(2)  Numbers —1, —2, —3, —4, --- | are called negative integers .

o If n is a negative integer, then n — 1 is a negative integer.
o If n is a positive integer, then —n is a negative integer.
o If n is a negative integer, then —n is a positive integer.
(3) 0 is an integer. 0 is neither a positive integer nor a negative integer.

(4) Positive integers, negative integers, and 0 are called integers. No other numbers
are called integers.

So, in short, what you used to call ‘whole numbers’ are now called ‘integers’.

* Paraphrase.

An integer is a number such that, in its decimal expression, there are no digits
under the decimal point (or all the digits under the decimal point are 0).

Examples.
o 13 is an integer. Indeed, it is a positive integer.
o —T7 1is an integer. Indeed, it is a negative integer.
o 1000 is an integer. Indeed, it is a positive integer.

o  Once again, 0 is an integer.

2
o = = 0.4 is not an integer.
4 . .
o 5 = 1.33333... is not an integer.
) . )
o 5 = —0.83333... is not an integer.
21 . .
o —3 = —2.625 1is not an integer.
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*  Don’t be misled and think that fractions are not integers. For example,

4
° 5 is an integer. Indeed, this fraction is reduced to 2.

-99
°© 1 is an integer. Indeed, this fraction is reduced to —9.
*  Question. Why use the term ‘integers’ instead of ‘whole numbers’? This

sounds pretentious.

* Answer. That’s mainly psychological. The term ‘whole number’ sounds a little
juvenile. ‘Integer’ sounds more professional and thus is more preferable. No deeper
reason. I am going to use this term ‘integers’ throughout this semester. It simply
means ‘whole number’.

Now, strictly within the world of positive integers, 5 does not have an expression
of the form 5 = a -b, other than

5 =1"-5, and 5=25-1.

So 5 is an example of a prime number. Meanwhile, 6 is an example of a non-prime
number. Indeed,

6 =2-3.

More generally:

Definition (prime numbers). A prime number is a positive integer p such
that, no matter how you choose a and b, n = a -b cannot be achieved as long as
a and b are both positive integers that are strictly smaller than p. So,

2, 3,5, 7,11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
53, 59, 61, 67, ---

are prime numbers, whereas
1, 4, 6, 8, 9,10, 12, 14, 15, 16, 18, 20, 21, 22, 24,
25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40,
42, 44, 45, 46, 48, 49, 50, 51, 52, ---

are not prime numbers.



Pop quiz. The only even prime number is 2. Can you explain why?

So how many prime numbers are there in this world? Around 300 B.C., a mathe-
matician named Euclid in Greece has discovered that there are infinitely many prime
numbers. What does that mean? It means as follows. Let p be a prime number.
Then no matter how large (or Small) p is, there is a guarantee there is another
prime number strictly bigger than p.

Now, how Euclid convinced himself that is indeed true is an interesting subject
in its own right. But let me skip that part. And so far this is very understandable
material. But what’s so interesting is that, the subsequent research has revealed that
there seems no regular patterns in the distribution of prime numbers. Indeed, if you
just look at the above list of prime numbers, you might have the impression that the
occurence of prime numbers in the integer sequence

1,2, 3,4,5,6,7,8,09, 10, ---

is like every fourth one or every sixth one is a prime number. But that is actually
going to change before long, namely, the density of prime numbers within the entire
integer sequence is going to become much more sparse as you keep climbing up to a
larger number territory. The following statement might be counterintuitive to you,
but it is true. So listen: There are 1000000 (one million) consecutive integers none
of which is a prime. By the way, in what follows, ‘prime’ just means ‘prime numbers’.
This usage is customary. Worse, in the above statement, you can replace 1000000
(one million) with any larger number you like, and you can still find consecutive
integers of that length none of which is a prime. There is actually an elementary
explanation why that is true. But once again, let me skip that. So, is there any
regular patterns the primes exhibit? Mathematicians have tried so hard to discover
any sort of patterns for the primes, but failed.

Now, this is where it gets so interesting. A relatively recent research result by
Yitang Zhang at University of New Hampshire has revealed that, no matter how
large a number you choose, there are two primes above that number and whose gap
is less than 70000000 (seventy million). That was May, 2013. This is extremely
groundbreaking, because before him, no such bound (70000000 is the bound he
discovered) was proven to exist. Now, it is conjectured that that bound can be
sharpened, it is believed to be ultimately trimmed down to 2. This is actually
another famous unsolved problem, so-called ‘the twin-prime conjecture’. The reason
for this naming is it would then be true that there are infinitely many ‘twin primes’
(: two primes whose gap is precisely 2). In view of the content of ‘Pop Quiz’ above,
this ‘presumed bound’ 2 is optimal, if the twin prime conjecture is indeed true.
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Now, I can tell you the reason why computers cannot solve these. These line of
problems clearly all deal with infinity. What your computer can tell you is whether
up to a certain large number your working hyopthesis is true. But that does not
constitute a solution to the problem, unfortunately. Computer’s capacity is essen-
tially limited to finite algorithms. Most outstanding problems in math, such as the
Riemann Hypothesis, has to do with infinity. Still, computers can be effective tools.
Indeed, they serve as a checking device. I too use a computer on a daily basis as
a checking device, in my research context. This is the ingrained weakness (or the
limitation) of computers. So it’s not like fine-tuning their efficiency would funda-
mentally resolve the matter.

That said, there is one famous example of an outstanding problem that has been
solved by computers. Just briefly, it goes something like this. Imagine the map of the
contiguous 48 states with the state lines clearly drawn. Then it suffices four different
colors to paint the entire map, with one state in one color, and two adjacent states
in different colors. And the same conclusion can be drawn for any map, namely, four
colors always suffice to paint any map, not just the map of the United States. This
was once a famous open problem, and was solved by a team of mathematicians in the
1970s who first wrote up computer programs, and then coaxed their super-computer
to solve it.! This problem is called ‘The Four Color Problem’. Let me emphasize
that, since it had been solved, it is not an open problem any more. The reason why
the computer way was feasible in this particular case was because the problem was
essentially breakable into finite algorithms (steps). Remember, that’s the forte of
computers. Yet please remember that somebody has to coax the computer to do
the job, and that part requires expertise, not something a lay person can do. Most
outstanding open problems in math are not like this, though. They have to be solved
in an ex machina way.

And not the Riemann Hypothesis yet. Please bear with me. So, back to the primes,
I was telling you that, mathematicians weren’t able to identify any sort of meaningful
patterns in how the primes are spread across the entire integer sequence. That is,
until Riemann. (Actually I am making a long story short here.) Riemann’s major
discovery, which he thoroughly illustrated in his famous paper submitted as a part of
his professorship petition (qualiﬁer) to University of Gottingen, Germany, is that,
there is a distinguished function which would later be called Riemann’s zeta function
¢ (s), and this function encodes the ultimate clue about the hidden patterns of the
distributions of primes.? More precisely, our understanding of the distribution of

ISolved by Kenneth Appel and Wolfgang Haken in 1976.
2B. Riemann “Uber die Anzahl Primzahlen unter einer gegebenen Grofe” (On the number of
prime bumbers less than a given quantity), 1859.
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primes hinges on the location of s at which that function ¢ (s) takes the zero value.
According to Riemann, it is very likely that those locations are lined up in a straight
line, called ‘the critical line’. Riemann himself did not know how to solve it. What
we know is this has been checked for the first 10000000000 (ten billion) Zeroes,
by computers. But again, that means next to nothing, these are finitely many cases
out of infinitely many. Well, actually that was not entirely fair. I shouldn’t discredit
those who pulled this important computer-aided result.

By the way, the first person who verified that there are indeed infinitely many
s at which ( (s) takes the zero value on ‘the critical line’ is called G. H. Hardy
(1877—1947), a famous British mathematician and author. Hardy was known to
be outspoken, and wrote up a book called “A Mathematicians’ Apology” wherein
he advocated his belief, that the sole value of mathematics is its aesthetic beauty.
Hardy was at the center of the British intellectual circle in the early 20th century, and
his close friends include the philosopher / mathematician Bertrand Russell, known for
the Russell’s paradox, and the economist Maynard Keynes, known for the Keynesian
economics. We call those s at which ¢ (3) takes the zero value ‘the non-trivial zeroes
of zeta’. So what Hardy has proved is that there are infinitely many non-trivial zeroes
of zeta on ‘the critical line’.

*  You don’t have to know what each of the following means, but let me throw
them anyway so you have some idea how Riemann’s original paper looks like
(mathematicians today understand precisely what these mean):

C(s) = i ;S (Res> 1),

3
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