Math 105 TOPICS IN MATHEMATICS QUIZ - VIII (In-Class)

March 27 (Fri), 2015
Instructor: Yasuyuki Kachi
Line \#: 52920.

ID \#:
Name:
[I] (4pts) Convert each of the following expression of numbers in the binary system back into the usual decimal system.
(a) 11 .
(b) 110 .
(c) 1001 .
(d) 1111111 (seven straight 1s).
[Answers $]:$ (a)
(b) \qquad (c)
(d)
[II] (3pts) Convert each of the following expressions of numbers in the usual decimal system into the binary system.
(a) 5 .
(b) 12 .
(c) 35 .
$[$ Answers $]:$ (a)
(b) \qquad (c) \qquad
[III] (3pts) Convert each of the following expression of numbers in the hexadecimal system back into the usual decimal system.
(a) C.
(b) $1 B$.
(c) $A 5$.
[Answers $]:$ (a)
(b)

(c) \qquad

Line \#: 52920.

ID \# :
Name:
[IV] (3pts) Convert each of the following expressions of numbers in the usual decimal system into the hexadecimal system.
(a) 16 .
(b) 28 .
(c) $16^{4}-1$.
[Answers $]:$
(b)
(c) \qquad
[V] (3pts) Simplify:
(1) $3^{x} \cdot 8^{x}=$
\qquad
(2) $a^{\frac{1}{3}} \cdot a^{\frac{5}{3}}=$
\qquad .
(3) $\left(a^{\sqrt{3}}\right)^{\sqrt{12}}=$ \qquad .
[VI] (2pts) Find the limits:
(1) $\lim _{n \rightarrow \infty}\left(1+\frac{8}{n}\right)^{n}=$ \qquad (2) $\lim _{n \rightarrow \infty}\left(1-\frac{1}{2 n}\right)^{n}=$. \qquad .
[VII] (3pts) Identify the following infinite sum (the answer is an e-to-the-power):

$$
1+\frac{1}{1!} \cdot 3+\frac{1}{2!} \cdot 3^{2}+\frac{1}{3!} \cdot 3^{3}+\frac{1}{4!} \cdot 3^{4}+\frac{1}{5!} \cdot 3^{5}+\cdots=
$$

