Math 105 TOPICS IN MATHEMATICS REGULAR HOMEWORK – XI

April 29 (Wed), 2015

Instructor: Yasuyuki Kachi

Line #: 52920.

- \star Due date: Monday, May 4th, 2015.
- * Your paper will be collected in class. No late homework will be accepted. Please see "<u>Rules, Policies and Protocols</u>" p.14 about homework policy.
- [I] (16pts) Evaluate (1) $\sin 0.$ (2) $\sin \frac{\pi}{6}.$ (3) $\cos \left(-\frac{\pi}{4}\right).$ (4) $\sin \frac{\pi}{3}.$ (5) $\cos \frac{\pi}{2}.$ (6) $\cos \frac{5\pi}{6}.$ (7) $\sin \left(-\frac{\pi}{2}\right).$ (8) $\cos \pi.$ [II] (4pts) (1) Find the distance |PQ| between P = (0, 0) and Q = (5, 6).(2) Find the distance |PQ| between P = (-4, 0), and Q = (3, 1).[III] (4pts) (1) What number does $(\cos \theta)^2 + (\sin \theta)^2$ equal? (2) Paraphrase (1):

" The distance between

[IV] (3pts) Let

$$P = \left(\cos\frac{2\pi}{5}, \sin\frac{2\pi}{5}\right), \qquad Q = \left(\cos\frac{3\pi}{5}, \sin\frac{3\pi}{5}\right),$$
$$R = \left(\cos\frac{\pi}{5}, \sin\frac{\pi}{5}\right), \qquad S = (1, 0).$$

<u>True or false</u>: "|PQ| and |RS| are equal."

Explain.

[V] (5pts) Assume

$$B_8^{\circ}(x) = x^8 - 4x^7 + \frac{14}{3}x^6 - \frac{7}{3}x^4 + \frac{2}{3}x^2$$

and recover B_8 and $B_9^{\circ}(x)$. Follow the steps below:

(1) Add B_8 to $B_8^{\circ}(x)$. So, write out $B_8(x) = x^8 - 4x^7 + \frac{14}{3}x^6 - \frac{7}{3}x^4 + \frac{2}{3}x^2 + B_8.$ (2) Take its antiderivative. So, complete the following line: $\int B_8(x) dx = \frac{1}{9}x^9 - \frac{1}{2}x^8 + \underline{\qquad} + B_8 \cdot x + C.$

This is $\frac{1}{9}B_9^\circ(x)$. So

$$\frac{1}{9}B_9^{\circ}(x) = \frac{1}{9}x^9 - \frac{1}{2}x^8 + \dots + B_8 \cdot x + C.$$

Substitute x = 0 and x = 1 into (2) independently. The outcomes are both (3)0. Thus

$$\begin{cases} 0 = \frac{1}{9}0^9 - \frac{1}{2}0^8 + \\ 0 = \frac{1}{9}1^9 - \frac{1}{2}1^8 + \\ \end{array} + B_8 \cdot 0 + C.$$

The first of the two equations reads 0 = C. So C = 0. Taking this into account, the second of the two equations becomes

$$0 = \frac{1}{9} - \frac{1}{2} + B_8.$$

Solve it for B_8 .

$$B_8 =$$

Substitute the value for B_8 which you found in (3) into the result of (2). (4)Multiply 9 to the both sides. So

_ •

$$B_9^{\circ}(x) = x^9 - \frac{9}{2}x^8 +$$

$$B_8 =$$
_____.