Math 105 TOPICS IN MATHEMATICS
 REGULAR HOMEWORK - XI

April 29 (Wed), 2015
Instructor: Yasuyuki Kachi
Line \#: 52920.

* Due date: Monday, May 4th, 2015.
\star Your paper will be collected in class. No late homework will be accepted.
Please see "Rules, Policies and Protocols" p. 14 about homework policy.
[I] (16pts) Evaluate
(1) $\sin 0$.
(2) $\sin \frac{\pi}{6}$.
(3) $\cos \left(-\frac{\pi}{4}\right)$.
(4) $\sin \frac{\pi}{3}$.
(5) $\cos \frac{\pi}{2}$.
(6) $\cos \frac{5 \pi}{6}$.
(7) $\sin \left(-\frac{\pi}{2}\right)$.
(8) $\cos \pi$.
[II] (4pts)
(1) Find the distance $|P Q|$ between $P=(0,0)$ and $Q=(5,6)$.
(2) Find the distance $|P Q|$ between $P=(-4,0)$, and $Q=(3,1)$.
[III] (4pts) (1) What number does $(\cos \theta)^{2}+(\sin \theta)^{2}$ equal?
(2) Paraphrase (1):
" The distance between

$$
P=(\square, \quad \square)
$$

$\underline{\underline{\text { and the coordinate origin }}} O=\left(\begin{array}{ll}0, & 0\end{array}\right) \quad \underline{\underline{\text { is always } 1}}$."
[IV] (3pts) Let

$$
\begin{array}{ll}
P=\left(\cos \frac{2 \pi}{5}, \sin \frac{2 \pi}{5}\right), & Q=\left(\cos \frac{3 \pi}{5}, \sin \frac{3 \pi}{5}\right) \\
R=\left(\cos \frac{\pi}{5}, \sin \frac{\pi}{5}\right), & S=(1,0)
\end{array}
$$

True or false : $\quad "|P Q|$ and $|R S|$ are equal."

Explain.
[V] (5pts) Assume

$$
B_{8}^{\circ}(x)=x^{8}-4 x^{7}+\frac{14}{3} x^{6}-\frac{7}{3} x^{4}+\frac{2}{3} x^{2},
$$

and recover B_{8} and $B_{9}{ }^{\circ}(x)$. Follow the steps below:
(1) Add B_{8} to $B_{8}{ }^{\circ}(x)$. So, write out

$$
B_{8}(x)=x^{8}-4 x^{7}+\frac{14}{3} x^{6}-\frac{7}{3} x^{4}+\frac{2}{3} x^{2}+B_{8}
$$

(2) Take its antiderivative. So, complete the following line:

$$
\int B_{8}(x) d x=\frac{1}{9} x^{9}-\frac{1}{2} x^{8}+\ldots+B_{8} \cdot x+C .
$$

This is $\quad \frac{1}{9} B_{9}{ }^{\circ}(x) . \quad$ So

$$
\frac{1}{9} B_{9}^{\circ}(x)=\frac{1}{9} x^{9}-\frac{1}{2} x^{8}+\quad+B_{8} \cdot x+C
$$

(3) Substitute $x=0$ and $x=1$ into (2) independently. The outcomes are both 0 . Thus

$$
\begin{cases}0=\frac{1}{9} 0^{9}-\frac{1}{2} 0^{8}+ & +B_{8} \cdot 0+C \\ 0=\frac{1}{9} 1^{9}-\frac{1}{2} 1^{8}+ & +B_{8} \cdot 1+C\end{cases}
$$

The first of the two equations reads $0=C$. So $C=0$. Taking this into account, the second of the two equations becomes

$$
0=\frac{1}{9}-\frac{1}{2}+\quad+B_{8}
$$

Solve it for B_{8}.

$$
B_{8}=
$$

(4) Substitute the value for B_{8} which you found in (3) into the result of (2). Multiply 9 to the both sides. So

$$
B_{9}{ }^{\circ}(x)=x^{9}-\frac{9}{2} x^{8}+
$$

