Math 105 TOPICS IN MATHEMATICS

SOLUTION FOR REGULAR HOMEWORK - XI (04/29)

May 4 (Mon), 2015
Instructor: Yasuyuki Kachi
Line \#: 52920.
[I] (16pts)
(1) $\sin 0=0$.
(2) $\sin \frac{\pi}{6}=\frac{1}{2}$.
(3) $\quad \cos \left(-\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$.
(4) $\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$.
(5) $\cos \frac{\pi}{2}=0$.
(6) $\cos \frac{5 \pi}{6}=-\frac{\sqrt{3}}{2}$.
(7) $\sin \left(-\frac{\pi}{2}\right)=-1$.
(8) $\cos \pi=-1$.
[II] (4pts) (1) The distance $|P Q|$ between $P=(0,0)$ and $Q=(5,6)$.
$[$ Solution $]$:

$$
\begin{aligned}
|P Q| & =\sqrt{(5-0)^{2}+(6-0)^{2}} \\
& =\sqrt{5^{2}+6^{2}} \\
& =\sqrt{61} .
\end{aligned}
$$

(2) The distance $|P Q|$ between $P=(-4,0)$, and $Q=(3,1)$.
$[\underline{\text { Solution }}]: \quad|P Q|=\sqrt{(3-(-4))^{2}+(1-0)^{2}}$

$$
=\sqrt{7^{2}+1^{2}}
$$

$$
=\sqrt{50}=5 \sqrt{2}
$$

[III] (4pts) (1) What number does $(\cos \theta)^{2}+(\sin \theta)^{2}$ equal?
$[$ Answer $]$:
1.
(2) Paraphrase (1):
" The distance between

$$
P=\left(\begin{array}{|c}
\cos \theta \\
\sin \theta \\
\hline
\end{array}\right.
$$

$\underline{\underline{\text { and the coordinate origin }}} O=\left(\begin{array}{ll}0, & 0\end{array}\right) \xlongequal{\text { is always 1. }} . "$
[IV] (3pts) Let

$$
\begin{array}{ll}
P=\left(\cos \frac{2 \pi}{5}, \sin \frac{2 \pi}{5}\right), & Q=\left(\cos \frac{3 \pi}{5}, \sin \frac{3 \pi}{5}\right) \\
R=\left(\cos \frac{\pi}{5}, \sin \frac{\pi}{5}\right), &
\end{array}
$$

True or false : $\quad "|P Q|$ and $|R S|$ are equal."

Explain.
$[\underline{\text { Answer }}]: \quad$ True.
[Explanation $]: \quad P$ and Q are both lying in the unit circle such that the angle $\angle P O Q$ equals $\frac{3 \pi}{5}-\frac{2 \pi}{5}=\frac{\pi}{5}$. R and S are also both lying in the unit circle such that the angle $\angle R O S$ equals $\frac{\pi}{5}-0=\frac{\pi}{5}$. Hence $|P Q|$ and $|R S|$ are naturally equal.
[V] (5pts) Assume

$$
B_{8}^{\circ}(x)=x^{8}-4 x^{7}+\frac{14}{3} x^{6}-\frac{7}{3} x^{4}+\frac{2}{3} x^{2}
$$

and recover B_{8} and $B_{9}{ }^{\circ}(x)$. Follow the steps below:
(1) Add B_{8} to $B_{8}{ }^{\circ}(x)$. So,

$$
B_{8}(x)=x^{8}-4 x^{7}+\frac{14}{3} x^{6}-\frac{7}{3} x^{4}+\frac{2}{3} x^{2}+B_{8}
$$

(2) Take its antiderivative:

$$
\int B_{8}(x) d x=\frac{1}{9} x^{9}-\frac{1}{2} x^{8}+\frac{2}{3} x^{7}-\frac{7}{15} x^{5}+\frac{2}{9} x^{3}+B_{8} \cdot x+C .
$$

This is $\quad \frac{1}{9} B_{9}{ }^{\circ}(x) . \quad$ So

$$
\frac{1}{9} B_{9}{ }^{\circ}(x)=\frac{1}{9} x^{9}-\frac{1}{2} x^{8}+\frac{2}{3} x^{7}-\frac{7}{15} x^{5}+\frac{2}{9} x^{3}+B_{8} \cdot x+C .
$$

(3) Substitute $x=0$ and $x=1$ into (2) independently. The outcomes are both 0 . Thus

$$
\left\{\begin{array}{l}
0=\frac{1}{9} 0^{9}-\frac{1}{2} 0^{8}+\frac{\frac{2}{3} 0^{7}-\frac{7}{15} 0^{5}+\frac{2}{9} 0^{3}+B_{8} \cdot 0+C .}{0}=\frac{1}{9} 1^{9}-\frac{1}{2} 1^{8}+\frac{2}{3} 1^{7}-\frac{7}{15} 1^{5}+\frac{2}{9} 1^{3}+B_{8} \cdot 1+C .
\end{array}\right.
$$

The first of the two equations reads $0=C$. So $C=0$. Taking this into account, the second of the two equations becomes

$$
0=\frac{1}{9}-\frac{1}{2}+\frac{2}{3}-\frac{7}{15}+\frac{2}{9}+B_{8}
$$

Solve it for B_{8}.

$$
B_{8}=-\frac{1}{30} .
$$

(4) Substitute the value for B_{8}. Multiply 9 to the both sides. So

$$
B_{9}^{\circ}(x)=x^{9}-\frac{9}{2} x^{8}+6 x^{7}-\frac{21}{5} x^{5}-2 x^{3}-\frac{3}{10} x
$$

