Math 105 TOPICS IN MATHEMATICS SOLUTION FOR REGULAR HOMEWORK - I (01/23)

January 28 (Wed), 2015
Instructor: Yasuyuki Kachi
Line \#: 52920.
[I] (10pts)
(a) 17 is a prime. (b) 25 is not a prime. (Indeed, $25=5 \cdot 5$.)
(c) 31 is a prime. (d) 87 is not a prime. (Indeed, $87=3 \cdot 29$.)
(e) 101 is a prime. (Indeed, 101 is not divisible by either one of $2,3,5$ or 7, the only primes whose square is less than 101.)
[II] (9pts) True or false:
(1) "There are infinitely many prime numbers."

- The answer is "true".
(2) "There are 1000000000000 (one trillion) consecutive positive integers none of which is a prime."
- The answer is "true".
(3) "No matter how large a number you choose, there are two primes above that number and whose gap is less than 70000000 (seventy million)."
- The answer is "true".
\star [Sidenote $]$ The statement (3) is a theorem by Dr. Yitang Zhang (2013).
[III] (3pts) Identify the only even prime number.
- The answer is 2 .
[IV] (4pts) (1) The Riemann Hypothesis was proposed by Bernhart Riemann.
[Sidenote] That was in 1859.
(2) Has it been solved, as of January 23, 2015? (Answer 'Yes' or 'No'.)
- The answer is 'no'. It is still an open problem as of today.
[V] (4pts)
(a)

$$
\begin{aligned}
1 & +2+3+4+5+6+7+8+9+10 \\
+11 & +12+13+14+15+16+17+18+19+20 \\
+21 & +22+23
\end{aligned}
$$

is found as the substitution of $n=23$ in $\quad \frac{1}{2} n(n+1)$. It is performed as

$$
\frac{1}{2} \cdot 23 \cdot 24=276
$$

(b)

$$
1+2+3+4+5+\cdots+1000
$$

is found as the substitution of $\quad n=1000 \quad$ in $\quad \frac{1}{2} n(n+1)$. It is performed as

$$
\frac{1}{2} \cdot 1000 \cdot 1001=500500
$$

