Your TA:
Seat \#: $\square-\square$

Math 105 TOPICS IN MATHEMATICS
 FINAL EXAM (Take-home)

May 6 (Wed), 2015
Instructor: Yasuyuki Kachi
Line \#: 52920.

ID \# :
Name:

This take-home part of Final Exam is worth 80 points and is due in class Friday, May 15th, 2015. Submission after 10:00 am, May 15th will not be accepted.

- Be sure to write your answers neatly, precisely, and with complete sentences. You may use notes and handed out materials, but no outside help.
- Print off one entire set of this exam. Write answers in the printed sheets. You may not supply your own (blank) sheet.
[I] (Take-home; 12pts) Convert each of the following expression of numbers in the binary system back into the usual decimal system.
(a) 101 .
(b) 11000 .
(c) 11111111 (eight straight 1s).
[Answers $]:$ (a)
(b)
(c) \qquad
[II] (Take-home; 8pts) Agree

$$
e^{2}=1+\frac{1}{1!} \cdot 2+\frac{1}{2!} \cdot 2^{2}+\frac{1}{3!} \cdot 2^{3}+\frac{1}{4!} \cdot 2^{4}+\frac{1}{5!} \cdot 2^{5}+\cdots
$$

Mimic this and write out the following quantity exactly in this format.

Line \#: 52920.

ID \#:
Name:
([II] continued)

$$
e^{\pi}=
$$

\qquad
[III] (Take-home; 12pts) Expand
(1) $x^{4}\left(x^{4}+x^{2}+1\right)=$
(2) $(x+1)(x+6)=$
(3) $(x-1)\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\right)=$
[IV] (Take-home; 8pts) Find

$$
\begin{equation*}
\frac{d}{d x} x^{10}= \tag{1}
\end{equation*}
$$

\qquad -.
(2) $\quad \frac{d}{d x}\left(1+\frac{1}{1!} x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\frac{1}{4!} x^{4}+\frac{1}{5!} x^{5}+\frac{1}{6!} x^{6}+\frac{1}{7!} x^{7}\right)$
$=$ \qquad

Line \#: 52920.

ID \# :
Name:
[V] (Take-home; 8pts)
(1) $(\cos \theta)^{2}+(\sin \theta)^{2}=$
(2) Paraphrase (1):
" The distance between
$P=(\square)$
$\underline{\underline{\text { and the coordinate origin }}} O=\left(\begin{array}{ll}0, & 0\end{array}\right) \xlongequal{\text { is always 1. }} . "$
[VI] (Take-home; 6 pts$) \quad \int 9 x^{8} d x=x^{9}+C$.
This means

[VII] (Take-home; 6pts) (Do not forget + C. $)$
(1) $\int 6 x^{5} d x=$
\qquad -

$$
\begin{equation*}
\int x^{11} d x= \tag{2}
\end{equation*}
$$

\qquad .

Line \#: 52920.

ID \#:
Name:
[VIII] (Take-home; 8pts)
(1) $\sin (x+y)=$

$$
(\text { in terms of } \sin x, \cos x, \sin y \text { and } \cos y) .
$$

(2) $\cos (x+y)=$

$$
(\text { in terms of } \sin x, \cos x, \sin y \text { and } \cos y) .
$$

[IX] (Take-home; 6pts)
(1) $\int \cos x d x=$ \qquad
(2) $\int \sin x d x=$ \qquad -.
[X] (Take-home; 6pts)

