Your TA:
$\underline{\text { Seat \#: } \square-\square}$

Math 105 TOPICS IN MATHEMATICS
MIDTERM EXAM - I (Take-home)
March 6 (Fri), 2015
Instructor: Yasuyuki Kachi
Line \#: 52920.

ID \# :
Name:

This take-home part of Midterm Exam is worth 60 points and is due in class Wednesday, March 11th, 2015. Submission after 1:00 pm, March 11th will not be accepted.

- Be sure to write your answers neatly, precisely, and with complete sentences. You may use notes and handed out materials, but no outside help.
- Print off one entire set of this exam. Write answers in the printed sheets. You may not supply your own (blank) sheet.
* In problem [I] below we work on a model where one can divide any dollar amount by any large number (integer). Also, we never round figures. So, one-third of a dollar is never the same as 33 cents (because 33 cents is one-third of 99 cents).
[I] (Take-home; 20pts) You open a bank account, deposit a dollar in that account.
(1) Your bank offers 100 percent interest annually.

After one year, your balance is \qquad .
(2) Suppose your bank offers a compound interest with 100 percent rate annually.
(2a) After two years, your balance is \qquad .
(2b) After three years, your balance is
$\$$ \qquad .

Line \#: 52920.

ID \#:
Name:
([I] continued)
(3) Suppose the compounding takes place five times annually. So every $\frac{1}{5}$-th of a year $\frac{1}{5} \cdot 100=20$ percent of your balance will be accrued as an interest.
(3a) After the $\frac{1}{5}$-th of a year, your balance is \qquad .
(3b) After the $\frac{2}{5}$-th of a year, your balance is \qquad
(3c) After the one year, your balance is $\$\left(1+\frac{1}{\boxed{5}}\right)^{\square}$.
(4) Suppose the compounding takes place 10^{100} times annually. So every $\frac{1}{10^{100}}$-th of a year, $\frac{1}{10^{100}}$ times 100 percent of your balance will be accrued as an interest.

After one year, your balance is

(5) Is your answer in (4)
$\square \quad$ between $\$ 1$ and $\$ 2$.
$\square \quad$ between $\$ 2.50$ and $\$ 3.00$.between $\$ 2$ and $\$ 2.50$.more than $\$ 3$.
(Check one. $)$

Line \#: 52920.

ID \# :
Name:
[II] (Take-home; 20pts) (a) Use calculator to pull the decimal expressions of the numbers in each of (a5) through (a10).

(a1) $\left.1+\frac{1}{1!}=$\begin{tabular}{|c|}
\hline 2 \\
\hline 0

$\frac{0}{} \right\rvert\,$

\hline \& 0 \& 0 \& 0 \\
\hline
\end{tabular},

(a2) $1+\frac{1}{1!}+\frac{1}{2!}=$| 5 | 0 | 0 | 0 | 0 | 0 |
| :---: | :--- | :--- | :--- | :--- | :--- |,

(a3) $1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}=$| 2 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |$\cdot 6$

(a4) $1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}=$\begin{tabular}{|c|}
\hline 2 \\
\hline

\cdot

\hline 7 \& 0 \& 8 \& 3 \& 3 \& 3 \\
\hline
\end{tabular},

(a5) $1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}$

(a6) $1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\frac{1}{6!}$

(a7) $1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\frac{1}{6!}+\frac{1}{7!}$

Line \#: 52920.

ID \# :
Name:
([II] continued)
(a8) $1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\frac{1}{6!}+\frac{1}{7!}+\frac{1}{8!}$

(a9) $1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\frac{1}{6!}+\frac{1}{7!}+\frac{1}{8!}$

$$
+\frac{1}{9!}=\square \cdot \square \left\lvert\, \begin{array}{l|l|l|}
\hline & & \\
\hline
\end{array}\right.
$$

(a10) $1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\frac{1}{6!}+\frac{1}{7!}+\frac{1}{8!}$

$$
+\frac{1}{9!}+\frac{1}{10!}=\square \cdot \begin{array}{|}
\hline & & & & \ldots
\end{array} .
$$

(b) Use calculator to find the smallest positive integer n such that

$$
\left(1+\frac{1}{n}\right)^{n}
$$

is bigger than the value in (a4) above $(=2.7083333 \ldots)$.

$$
n=
$$

Line \#: 52920.

ID \#:
Name:
([II] continued)
(c) True or false :
"Let k be an arbitrarily chosen positive integer, and fixed. If you choose a large enough n, then

$$
\begin{aligned}
& \left(1+\frac{1}{n}\right)^{n}>1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\cdots+\frac{1}{k!} " \\
& \square \quad \text { True. }
\end{aligned}
$$

(d1) Give one definition of e.

$$
e=\lim _{n \rightarrow \infty}(1+\square)^{n}
$$

(d2) Give another definition of e.
$e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{\square}+\frac{1}{\square}+\frac{1}{\square}+\frac{1}{\square}+\cdots+\frac{1}{\square}\right)$.
(d3) The decimal expression of e up to the first six place under the decimal point

Line \#: 52920.

ID \# :
Name:
[III] (Take-home; 20pts) Prove that $\sqrt{3}$ is an irrational number.

Proof. Proof by contradiction. Suppose $\sqrt{3}$ is written as

$$
\sqrt{3}=\frac{k}{m}
$$

using some integers k and m (where $m \neq 0$).
First, if both k and m are divisible by 3 , then we may simultaneously divide both the numerator and the denominator by 3 (and the value of the fraction stays the same). After that procedure, suppose both the numerator and the denominator still remain to be divisible by \square, then we repeat the same procedure as many times as necessary until at least one of the numerator and the denominator is not divisible by \square. Thus we may assume, without loss of generality, that at least one of k and m is

Under this assumption, square the both sides of the identity $\quad \sqrt{3}=\frac{k}{m}, \quad$ thus

$$
3=\frac{\square}{\square}
$$

This is the same as

$$
\square=k^{2}
$$

Line \#: 52920.

ID \# :
Name:
([III] continued)

The left-hand side of this last identity is clearly divisible by
 identity forces its right-hand side to be \qquad .

That in turn implies k is because if k is
\qquad ,
then k^{2} is
, \qquad .

But then k being divisible by \square implies k^{2} is \qquad .

So by virtue of the above last identity $3 m^{2}$ is divisible by \square or the same to say, m^{2} is divisible by \square. This implies that m is \qquad .

In short, both k and m are
\qquad .

This contradicts our assumption. The proof is complete.

