Math 105 TOPICS IN MATHEMATICS
 SOLUTION FOR MIDTERM EXAM - I (Take-home; 03/06)

March 13 (Fri), 2015
Instructor: Yasuyuki Kachi
Line \#: 52920.

* In problem [I] below we work on a model where one can divide any dollar amount by any large number (integer). Also, we never round figures. So, one-third of a dollar is never the same as 33 cents (because 33 cents is one-third of 99 cents).
[I] (Take-home; 20pts) You open a bank account, deposit a dollar in that account.
(1) Your bank offers 100 percent interest annually.

After one year, your balance is $\quad \$ 2$.
(2) Suppose your bank offers a compound interest with 100 percent rate annually.
(2a) After two years, your balance is $\$ 4$.
(2b) After three years, your balance is $\$ 8$.
(3) Suppose the compounding takes place five times annually. So every $\frac{1}{5}$-th of a year $\frac{1}{5} \cdot 100=20$ percent of your balance will be accrued as an interest.
(3a) After the $\frac{1}{5}$-th of a year, your balance is \$1.20.

After the $\frac{2}{5}$-th of a year, your balance is $\quad \$ 1.44$.
(3c) After one year, your balance is $\$\left(1+\frac{1}{\boxed{5}}\right)^{5}$.
(4) Suppose the compounding takes place 10^{100} times annually. So every $\frac{1}{10^{100}}$-th of a year, $\frac{1}{10^{100}}$ times 100 percent of your balance will be accrued as an interest.

After one year, your balance is

$$
\$\left(1+\frac{1}{\sqrt{10^{100}}}\right)^{10^{100}}
$$

(5) Which one does your answer in (4) fall into?
$\square \quad$ between $\$ 1$ and $\$ 2$.between $\$ 2$ and $\$ 2.50$.
$\square \quad$ between $\$ 2.50$ and $\$ 3.00$.
more than $\$ 3$.
$[\underline{\text { Answer }}]: \quad$ Between $\$ 2.50$ and $\$ 3.00$.

Indeed, the answer in (4) is $2.718281828459045 \ldots$.
[II] (Take-home; 20pts) (a) Use calculator to pull the decimal expressions of the numbers in each of (a5) through (a10).

(a1) $1+\frac{1}{1!}=$\begin{tabular}{|c|}
\hline 2

\hline

\hline 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline
\end{tabular},

(a3) $1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}=$	2					
6	6	6	6	6	6	,

(a4) $1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}=$\begin{tabular}{|c|}
\hline 2

\hline

\hline 7 \& 0 \& 8 \& 3 \& 3 \& 3

\hline
\end{tabular},

(a5)

$$
\begin{aligned}
1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!} & +\frac{1}{5!} \\
& =\begin{array}{|c}
2 \\
2
\end{array}, \begin{array}{|l|l|l|l|l|l|}
\hline 7 & 1 & 6 & 6 & 6 & 6 \\
\hline
\end{array}
\end{aligned}
$$

(a6) $1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\frac{1}{6!}$

$$
=\begin{array}{|l|l|l|l|l|l|}
\hline 2 \\
\hline 7 & 1 & 8 & 0 & 5 & 5 \\
\hline
\end{array},
$$

(a7) $1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\frac{1}{6!}+\frac{1}{7!}$

$$
=\begin{array}{|l|l|l|l|l|l|}
\hline 7 & 1 & 8 & 2 & 5 & 3 \\
\hline
\end{array} \ldots
$$

(a8) $1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\frac{1}{6!}+\frac{1}{7!}+\frac{1}{8!}$

$$
=\begin{array}{|l|l|l|l|l|l|l|}
\hline 2 \\
\hline 7 & 1 & 8 & 2 & 7 & 8 \\
\hline
\end{array},
$$

(a9) $1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\frac{1}{6!}+\frac{1}{7!}+\frac{1}{8!}$

$$
+\frac{1}{9!}=\begin{array}{|l|l|l|l|l|l|}
\hline 7 & 1 & 8 & 2 & 8 & 1 \\
\hline
\end{array} \quad \ldots,
$$

(a10) $1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\frac{1}{6!}+\frac{1}{7!}+\frac{1}{8!}$

$$
+\frac{1}{9!}+\frac{1}{10!}=\begin{array}{|c|}
\hline 2 \\
\hline 7
\end{array} 1
$$

(b) Use calculator to find the smallest positive integer n such that

$$
\left(1+\frac{1}{n}\right)^{n}
$$

is bigger than the value in (a4) above $(=2.7083333 \ldots)$.
$[\underline{\text { Answer }}]: \quad n=136 . \quad$ Indeed,

$$
\begin{aligned}
& \left(1+\frac{1}{135}\right)^{135}=2.7082819990 \ldots, \quad \text { whereas } \\
& \left(1+\frac{1}{136}\right)^{136}=2.7083550352 \ldots
\end{aligned}
$$

(c) True or false :
"Let k be an arbitrarily chosen positive integer, and fixed. If you choose a large enough n, then

$$
\left(1+\frac{1}{n}\right)^{n}>1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\cdots+\frac{1}{k!}
$$

$[$ Answer $]: \quad$ True.

$$
\begin{equation*}
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \tag{d1}
\end{equation*}
$$

$e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{\boxed{1!}}+\frac{1}{\boxed{2!}}+\frac{1}{\boxed{3!}}+\frac{1}{\boxed{4!}}+\cdots+\frac{1}{\boxed{n!}}\right)$.
(d3) The decimal expression of e up to the first six place under the decimal point

2	7	1	8	2	8		1

[III] (Take-home; 20pts) Prove that $\sqrt{3}$ is an irrational number.

Proof. Proof by contradiction. Suppose $\sqrt{3}$ is written as

$$
\sqrt{3}=\frac{k}{m}
$$

using some integers k and m (where $m \neq 0$).

First, if both k and m are divisible by 3 , then we may simultaneously divide both the numerator and the denominator by 3 (and the value of the fraction stays the same). After that procedure, suppose both the numerator and the denominator still remain to be divisible by \square, then we repeat the same procedure as many times as necessary until at least one of the numerator and the denominator is not divisible by 3 . Thus we may assume, without loss of generality, that at least one of k and m is not divisible by 3.

Under this assumption, square the both sides of the identity $\quad \sqrt{3}=\frac{k}{m}, \quad$ thus

$$
3=\frac{k^{2}}{\boxed{m^{2}}}
$$

This is the same as

$$
3 m^{2}=k^{2}
$$

The left-hand side of this last identity is clearly divisible by $\quad 3$, so this last identity forces its right-hand side to be divisible by 3.

That in turn implies k is divisible by 3 , because if k is not divisible by 3 , then k^{2} is not divisible by 3.

But then k being divisible by 3 implies k^{2} is divisible by 9 .
So by virtue of the above last identity $3 m^{2}$ is divisible by \square, or the same to say, m^{2} is divisible by 3 . This implies that m is divisible by 3. In short, both k and m are divisible by 3.

This contradicts our assumption. The proof is complete.

